K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ đường thẳng qua C vuông góc AC cắt AD tại E
ta có ABCE=BDCD=2ABCE=BDCD=2 (1)
mà AB =AC =2 .AM (2)
từ (1, 2) =>AMCE=1AMCE=1 =>AM =CE
=>△BAM=△ACE△BAM=△ACE (c, g, c)
=>ABMˆ=CAEˆABM^=CAE^
mà ABMˆ+AMBˆ=90∘ABM^+AMB^=90∘
=>CAEˆ+AMBˆ=90∘CAE^+AMB^=90∘
=>BM vuông góc AD(đpcm)

3 tháng 2 2020

Kẻ  DE // BM  \(\rightarrow\frac{IM}{DE}=\frac{3}{5},BM=3DE\rightarrow MB=5MI\)

\(AB=a\rightarrow AM=\frac{a}{2},BM^2=\frac{5a^2}{4}\rightarrow MI.MB=\frac{Mb^2}{5}=\frac{a^2}{4}\)

\(AM^2=\frac{a^2}{4}\rightarrow MA^2=MI.MB=\frac{MB^2}{5}=\frac{a^2}{4}\)

29 tháng 1 2021

a/ Xét tg ADM và tg EDB

Bx//AC \(\Rightarrow\widehat{DAC}=\widehat{DEB}\) (góc so le trong)

\(\widehat{ADM}=\widehat{BDE}\) (góc đối đỉnh)

=> Xét tg ADM đồng dạng tg EDB (g.g.g) \(\Rightarrow\frac{BD}{DM}=\frac{BE}{AM}=\frac{BE}{\frac{AC}{2}}=\frac{1}{2}\Rightarrow\frac{BE}{AC}=\frac{1}{4}\)

b/ Xét tg BKE và tg AKC có

\(\widehat{AKC}=\widehat{BKE}\) (góc đối dỉnh)

Bx//AC \(\Rightarrow\widehat{KAC}=\widehat{KEB}\) (góc so le trong)

=> tg BKE đồng dạng tg AKC (g.g.g) \(\Rightarrow\frac{BE}{AC}=\frac{BK}{KC}=\frac{1}{4}\Rightarrow\frac{BK}{AC}=\frac{1}{5}\left(dpcm\right)\)

24 tháng 4 2017

Lời giải

Giải bài 6 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 6 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 2 2018

Câu hỏi của pham trung thanh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

3 tháng 4 2019

tham khảo link sau 

http://hoctottoancaphoc