K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

Hình bạn tự vẽ nhé

a) Xét ΔABH và ΔCBA có :

^AHB = ^A = 900

^B chung

=> ΔABH ~ ΔCBA (g.g)

b) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :

\(BC^2=AB^2+AC^2\)

<=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có BD là phân giác của ^B nên theo tính chất đường phân giác trong tam giác ta có : \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}=\dfrac{AD+DC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{8}{6+10}=\dfrac{1}{2}\)

=> \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{1}{2}\\\dfrac{DC}{BC}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{1}{2}AB=3cm\\DC=\dfrac{1}{2}BC=5cm\end{matrix}\right.\)

c) Xét ΔABD và ΔHBI có :

^A = ^BHI = 90

^ABD = ^HBI ( do BD là phân giác của ^B )

=> ^ABD ~ ΔHBI (g.g)

=> \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> AB.BI = HB.BD ( đpcm )

d) Từ \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> \(\dfrac{AB}{AD}=\dfrac{BD}{BI}=\dfrac{HB}{HI}=2\)

Ta có : \(S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9cm^2\)

mà ta có \(\dfrac{S_{ABD}}{S_{HBI}}=2^2=4\)=> SABD = 4SHBI

<=> 9 = 4SHBI <=> SHBI = 9/4cm2

27 tháng 6 2023

tại sao ở câu c, Sabd/Shib lại bằng 22 vậy ạ?

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có

góc HBI=góc ABD

=>ΔBHI đồng dạng với ΔBAD

=>BH/BA=BI/BD

=>BH*BD=BA*BI

a: Xet ΔBHA vuông tại H và ΔBAC vuông tại A có

góc HBA chung

=>ΔBHA đồng dạng với ΔBAC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/BC

=>DA/3=DC/5=8/8=1

=>DA=3cm; DC=5cm

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA*BI=BD*BH

d: ΔBAD đồng dạng với ΔBHI

=>\(\dfrac{S_{BAD}}{S_{BHI}}=\left(\dfrac{BA}{BH}\right)^2=\left(\dfrac{6}{3.6}\right)^2=\dfrac{25}{9}\)

=>\(S_{BHI}=\dfrac{1}{2}\cdot6\cdot3:\dfrac{25}{9}=9\cdot\dfrac{9}{25}=\dfrac{81}{25}\)

21 tháng 4 2023

tính ra ở câu b nó dech lquan gì đến đề luôn?

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)

b: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc ABH chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔBAD~ΔBHI

=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)

=>\(BA\cdot BI=BD\cdot BH\)

Ta có: ΔBAD~ΔBHI

=>\(\widehat{BDA}=\widehat{BIH}\)

mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)

9 tháng 3 2022

Dành cho anh em nào cần phần C nha

Xét ∆HIB và ∆AID có:

Góc IHB= góc IAD

     Góc I( đối đỉnh)

Suy ra ∆HIB đồng dạng vs ∆ AID

Suy ra góc HBI = ADI

Mà tâm giác BIH vuông tại H nên Góc HBI = BIH

Mà hai góc I đối đỉnh nên góc HBI = AID 

Mà góc HBI = ADI 

Nên góc ADI = góc AID 

Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )

 

 

 

 

a: Xét ΔBHA có BI là phân giác

nên IA/IH=BA/BH

hay \(IA\cdot BH=BA\cdot IH\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: BC=10cm

Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)

12 tháng 7 2021

cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại  nói tính AD

12 tháng 7 2021

Mk nhầm bên trên là AB=6cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)

mà AD+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; DC=5cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng với ΔCAH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm