K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

HFa, kg

15 tháng 8 2019

Câu hỏi của ✎﹏ Ƈøoȴ _ Ǥɩ®ʆ _☜♥☞ ✓ - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

2 tháng 5 2018

A B C D G M E F

a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.

Xét tam giác DMB và tam giác GMC có:

DM = GM

BM = CM

\(\widehat{DMB}=\widehat{GMC}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)

\(\Rightarrow BD=CG\)

b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)

Xét tam giác FBM và tam giác ECM có:

\(\widehat{FMB}=\widehat{EMC}=90^o\)

BM = CM

\(\widehat{FBM}=\widehat{ECM}\)

\(\Rightarrow\Delta FBM=\Delta ECM\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BF=CE\left(đpcm\right)\)

a: Xét ΔBFC và ΔCEB có

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

30 tháng 8 2021

a) Xét tam giác BFC và CEB ta có: 

Góc FBC = góc ECB

BF = CE

BC cạnh chung 

=> tam giác BFC = tam giác CEB (c-g-c)

a: Xét ΔBFC và ΔCEB có 

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét ΔBAC có

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

30 tháng 8 2021

mọi người giúp minhf  với

 

 

a: Xét ΔBFC và ΔCEB có 

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét ΔBAC có

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy