K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2015

bạn tự vẽ hỉnh nha

tg abe đều suy ra ae=eb=ab và bea=eba=eab=60 độ

tg acf đeu suy raac=cf=af và afc=fca=fac=60 độ 

gọi gọi EN,AG,BM là đường cao của tg EBA VÀ CÁC ĐƯỜNG CAO CẮT NHAU TẠI TRỰC TÂM H 

CMĐ TG ENB=ENA (CH GN) SUY RA NB=NA(2 CẠNG TƯƠNG ỨNG )

CMĐ TG HNB=HNA(C GC) SUY RA HB=HA(2 CẠNH TƯƠNG ỨNG ) (1)

CMĐ TG HIB=KIC (C G C) SUY RA HB=CK (2 CẠNH TƯƠNG ỨNG) VÀ GÓC HBI=KCI(2)

TỪ (1) VÀ (2) SUY RA HA=CK 

CMĐ GÓC EBH=ABH=30 ĐỘ HAN

TA CÓ KCF+ACF+ACB+ICK=360

        KCF =360-ACF-ACB-ICK =360-60-ACB-HBI=300-ACB-IBH(3)

TA CÓ GÓC HAF =HAB+BAC+CAF=30+BAC+60=90+BAC = 90+(180-ABC-ACB)=270-ABC-ACB=270-(IBH-30)-ACB =270-IBH+30-ACB=300-ACB-IBH(4)

TỪ (3) VÀ (4) TA SUY RA DC GÓC HAF=KCF

CMĐ TG HAF=KCF(C G C)

CHỖ NÀO BN KO HIỂU Ở BÀI MÌNH TRÌNH BÀY BN CÓ THỂ HỎI MÌNH .TAB CHO MÌNH NẾU ĐÚNG NHA

4 tháng 5 2017

chỗ cậu chứng minh các tam giác bằng nhau thì hơi dài.Cậu nên áp dụng t/c tam giác đều:

Có H là trực tâm của tam giác ABE

Mà tam giác ABE đều  => H cũng là trọng tâm

                                  => BN=NA ( t/c đường trung tuyến )

MÀ EN vuông góc với AB ( Cách vẽ),BN=NA (cnt)=>N thuộc đường trung trực AB=>AH=BH ( t/c)

12 tháng 3 2019

bạn có thể hướng dẫn phần b và c được ko 

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)