Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh BC lấy M là trung điểm. Qua M kẻ đường thẳng vuông góc với B'C' tại D
Ta có \(\hept{\begin{cases}BB'\text{//}MD\text{//}CC'\\BM=MC\end{cases}\Rightarrow}\)MD là đường trung bình của hình thang BCC'B'
\(\Rightarrow BB'+CC'=2MD\)
Mặt khác, ta luôn có \(DM\le AM\left(\text{hằng số}\right)\)
Do đó \(BB'+CC'\le2AM\)
Vậy BB'+CC' đạt giá trị lớn nhất bằng 2AM khi \(xy\perp MA\) tại A
Gọi D là trung điểm BC. Kẻ MI vuông với xyy tại I.
Vì BM vuông góc xy
CN vuông góc xy
DI vuông góc xy
=> BM // CN // DI
Vì BM // CN
=> BMNC là hình thang
mà D là trung điểm BC, DI // BM // CN
=> I là trung điểm MN
mà D là trung điểm BC
=> DI là đường trung bình của hình thang BMNC.
=> DI = \(\frac{BM+CN}{2}\)
=> BM + CN = 2DI
Có DI < DA ( quan hệ giữa đường vuông góc và đường xiên.
Để BM + CN lớn nhất
thì DI lớn nhất
=> DI trùng AD
=> DA vuông góc với xy
Vậy, nếu xy vuông góc với đường trung tuyến AD của tam giác ABC thì BM + CN lớn nhất.
Gọi O là giao điểm của AC và BD
⇒ OA = OC, OB = OD (tính chất hình bình hành)
Kẻ OO' ⊥ xy
AA' ⊥ xy (gt)
CC' ⊥ xy (gt)
Suy ra: AA' // OO' // CC'
Tứ giác ACC'A' là hình thang có:
OA = OC (chứng minh trên)
OO' // AA' nên OO' là đường trung bình của hình thang ACC'A'.
⇒ OO' = (AA' + CC') / 2 (t/chất đường trung bình của hình thang) (1)
BB' ⊥ xy
DD' ⊥ xy (gt)
OO' ⊥ xy (gt)
Suy ra: BB'// OO' // DD'
Tứ giác BDD'B' là hình thang có:
OB = OD (Chứng minh trên)
OO' // BB' nên OO' là đường trung bình của hình thang BDD'B'.
⇒ OO' = (BB' + DD') / 2 (tính chất đường trung bình của hình thang) (2)
Từ (1) và (2) => AA' + CC' = BB + DD'
.
????