Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O E F P
Ta có:
\(AF^2=AO^2-OF^2;BE^2=BO^2-OE^2,CP^2=CO^2-OP^2\)
\(AP^2=AO^2-OP^2;EC^2=OC^2-OE^2;BF^2=BO^2-OF^2\)
=> \(AF^2+BE^2+CP^2=AO^2-OF^2+BO^2-OE^2+CO^2-OP^2\)
và \(AP^2+EC^2+BF^2=AO^2-OP^2+OC^2-OE^2+BO^2-OF^2\)
=> Đpcm
b) Ta có:
\(AO+OC>AC,OC+OB>AB,OB+OA>AB\)
=> \(AB+AC+BC< 2\left(OA+OB+OC\right)\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC\)
Ý còn lại em tự làm nhé!:)
Ta có:
A B C O
\(OA+OB< AC+BC\)
\(OA+OC< AB+BC\)
\(OC+OB< AB+AC\)
Cộng theo từng vế ba bất đẳng thức trên ta được :
\(2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)
hay \(OA+OB+OC< AB+AC+BC\)(1)
Mặt khác trong các tam giác OAB,OBC,OCA,theo bất đẳng thức tam giác ta lại có :
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OA>AC\)
Cộng theo từng vế ba bất đẳng thức trên, ta được :
\(2\left(OA+OB+OC\right)>AB+BC+AC\)
hay \(OA+OB+OC>\frac{AB+AC+BC}{2}\)(2)
Từ (1) và (2) :
\(\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC.\)
A B C O I
Theo bất đẳng thức tam giác ta có
\(\Delta OAB:\)\(AB< OA+OB\)
\(\Delta OAC:\)\(AC< OA+OC\)
\(\Delta OBC:\)\(BC< OB+OC\)
\(\Rightarrow AB+BC+AC< 2\left(OA+OB+OC\right)\)
\(\Leftrightarrow\frac{AB+BC+AC}{2}< OA+OB+OC\)(1)
Gọi I là giao điểm của BO và AC
\(\Delta OAI:-OA< AI+OI\)
\(\Delta IBC:-IB< IC+BC\)
\(\Rightarrow OA+IB< AI+OI+IC+BC=AC+BC+OI\)
\(\Leftrightarrow OA+IB-OI< AC+BC\)
\(\Leftrightarrow OA+OB< AC+BC\)(OI+OB=IB)
Chứng minh tương tự ta có \(OA+OC< AB+BC;OB+OC< AB+AC\)
\(\Rightarrow2\left(OA+OB+OC\right)< 2\left(AB+BC+AC\right)\)(CỘNG 2 VẾ CỦA 3 BẤT ĐẢNG THỨC TRÊN)
\(\Leftrightarrow OA+OB+OC< AB+BC+AC\)(2)
Từ (1),(2) suy ra điều phải chứng minh.