K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

A B C D F E M

a ) Ta có : \(S_{\Delta ABC}=S_{\Delta MBC}+S_{\Delta MCA}+S_{\Delta MAB}\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}MD.BC+\frac{1}{2}ME.AC+\frac{1}{2}MF.AB\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}ax+\frac{1}{2}by+\frac{1}{2}cz\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow2S=ax+by+cz\)

\(\Rightarrowđpcm\)

b ) Ta có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)=\left(a^2+b^2+c^2\right)+\left(\frac{a}{x}.by+\frac{b}{y}.ax\right)+\left(by.\frac{c}{z}+cz.\frac{b}{y}\right)+\left(cz.\frac{a}{x}+ax.\frac{c}{z}\right)\)

\(=\left(a^2+b^2+c^2\right)+ab\left(\frac{y}{x}+\frac{x}{y}\right)+bc\left(\frac{y}{z}+\frac{z}{y}\right)+ca\left(\frac{z}{x}+\frac{x}{z}\right)\)

\(\ge a^2+b^2+c^2+2ab+2by+2ca=\left(a+b+c\right)^2\)

( vì ta dễ chứng minh được \(\frac{x}{y}+\frac{y}{x}\ge2\) - tương tự với \(\frac{y}{z}+\frac{z}{y};\frac{z}{x}+\frac{x}{z}\)

Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{\left(ax+by+cz\right)}=\frac{\left(a+b+c\right)^2}{2S}\)

Dấu " = " xay ra \(\Leftrightarrow x=y=z\)

Vậy Min \(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=\frac{\left(a+b+c\right)^2}{2S}\)

Chúc bạn học tốt !!

23 tháng 3 2019

B C A M D F E

a) Ta có: \(S_{\Delta ABC}=S_{\Delta MBC}+S_{\Delta MCA}+S_{\Delta MAB}\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}MD.BC+\frac{1}{2}ME.AC+\frac{1}{2}MF.AB\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}ax+\frac{1}{2}by+\frac{1}{2}cz\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow S=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow2S=ax+by+cz\)

=> đpcm

b) Ta có: \(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)=\left(a^2+b^2+c^2\right)+\left(\frac{a}{x}.by+\frac{b}{y}.ax\right)\) \(+\left(by.\frac{c}{z}+cz.\frac{b}{y}\right)+\left(cz.\frac{a}{x}+ax.\frac{c}{z}\right)\)

\(=\left(a^2+b^2+c^2\right)+ab\left(\frac{y}{x}+\frac{x}{y}\right)+bc\left(\frac{y}{z}+\frac{z}{y}\right)+ca\left(\frac{z}{x}+\frac{x}{z}\right)\)

\(\ge a^2+b^2+c^2+2ab+2by+2ca=\left(a+b+c\right)^2\) 

(vì ta dễ chứng minh được \(\frac{x}{y}+\frac{y}{x}\ge2\) - tương tự với \(\frac{y}{z}+\frac{z}{y};\frac{z}{x}+\frac{x}{z}\))

Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{\left(ax+by+cz\right)}=\frac{\left(a+b+c\right)^2}{2S}\)

Dấu "=" xảy ra <=> x = y = z

Vậy \(min\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=\frac{\left(a+b+c\right)^2}{2S}\) 

9 tháng 4 2016

giải câu c, d đi

11 tháng 10 2018

A B C M D E F I K L G N

Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.

Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800

Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)

Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)

Nên ^ECD = ^MKG hay ^ACB = ^MKG 

Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)

=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)

Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG

Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)

Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng

Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)

MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)

Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).

27 tháng 4 2020

?????