Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔECA có
AB=EC
góc ABD=góc ECA
BD=AC
=>ΔABD=ΔECA
b: ΔABD=ΔECA
=>AD=EA
=>ΔAED cân tại A
a,chứng minh gócABD bằng góc ECA bằng góc ngoài (= BAM + 90 độ)
Tam giác ABD = tam giác ECA (c-g-c)
b, AD = AE (2 cạnh tương ứng) suy ra tam giác DAE cân tại a (định nghĩa)
Tam giác ADM vuông tại M suy ra ADM +DAM=90 độ mà góc ADM = EAC (2 góc tương ứng)
Suy ra DAM + EAC = 90 ĐỘ suy ra góc DAE = 90 độ suy ra tam giác DAE vuông cân tại A
a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )
BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)
b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì.
Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM
c) Xét 2 tam giác EKC và tam giác DHB vuông tại K và H
Ta có: EC = DB
Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)
=> BH = CK
Bạn nguyen khoi nguyen ơi, ở câu b thì cho m là trung diểm bc, ko phaj de đâu
A, xét tam giác ABD và tam giác ACE có
AB = AC ( tam giác ABC cân tại A)
MK Góc ABD + ABC = 180 độ
lại có góc ACE + ACB = 180 độ
mà góc ABC = ACB(tam giác ABC cân tại A)
=> Góc ABD =ACE
BD = CE ( GT )
nên tam giác ABD = tam giác ACE (C-G-C)
=> góc ADB = góc AEC
=> tam giác AED cân tại A
b,xét tam giác DAM và tam giác EAM có
AD = AE ( cm a, )
AM cạnh cung
mk có MB=MC(M TĐ BC) (1)
ta lại có BD = CE ( GT) (2)
từ (1) và (2) ta có
DB+BM =CE + MC
hay DM = ME
nên tam giác DAM = tam giác EAM ( C-C-C )
=> góc MAD = MAE
=>AM ph/G góc DAE
c, xét tam giác BAH và tam giác CAK có
góc BHA=CKA ( = 1 vuông )
AC =AB ( tam giác ABC cân tại A)
góc BAH = CAK ( tam giác ABD = tam giác ACE)
nên tam giác BAH = tam giác CAK ( cạnh huyền góc nhọn )
=> BH = CK
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC(tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD=tam giác ACE(ch-gn)
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)
\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)
Do đó tam giác BHC cân tại H
Ta có hình vẽ:
a/
Ta thấy : GÓC ABB' = GÓC ACC' [ vì cùng phục với góc BAC ] => GÓC ABD = GÓC ECA [ vì kề bù với hai góc bằng nhau]
Xét tam giác ABD và tam giác ECA có :
BD = CA ; Góc ABD = Góc ECA ; AB = EC
=> Tam giác ABD = Tam giác ECA [ cạnh - góc -cạnh]
b/
Theo câu a , tam giác ABD = tam giác ECA
=> * AD = AE [1] ;
* Góc ADB = Góc EAC MÀ góc ADB + góc B'AD = 90 độ [vì tam giác AB'D vuông tại B']
=> Góc EAC +Góc B'AD = 90 độ
=> Góc DEA = 90 độ [2]
Từ [1] và [2] => tam giác DAE vuông cân tại A