K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

em lớp 6 mà vẫn hiểu sơ sơ nà

 

6 tháng 7 2017

hiểu sơ sơ sao đéo giải, đéo giải thì cút hiểu sơ sơ cái l

4 tháng 10 2016

Mình cũng chưa làm được bài 3. Cậu làm được, chỉ mình với nhé!

29 tháng 12 2017

B C A M H K N D O I

a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.

Khi đó hai đường chéo bằng nhau nên BM = HK.

b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.

Vậy thì K là trung điểm BC.

Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.

Lại có MN vuông góc BC nên BMCN là hình thoi.

Dễ thấy rằng MK = AB/2 hay MN = AB.

Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.

Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.

c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.

Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.

Vậy nên BM giao AM tại trung điểm mỗi đoạn.

Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.

d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.

Ta có:  do KM // AB, áp dụng Talet:

 \(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)

\(\Rightarrow IM=2OM\)

Áp dụng Talet cho tam giác AND và ADC ta có:

\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét tứ giác AGCK có

M là trung điểm của đường chéo AC

M là trung điểm của đường chéo GK

Do đó: AGCK là hình bình hành

Suy ra: AG//CK

Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của BC

Xét ΔBAC có 

AH là đường trung tuyến ứng với cạnh BC

BM là đường trung tuyến ứng với cạnh AC

AH cắt BM tại G

Do đó: G là trọng tâm của ΔABC

Suy ra: \(BG=\dfrac{2}{3}BM\)

\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)

\(\Leftrightarrow GM+MK=GK=\dfrac{2}{3}BM\)

\(\Leftrightarrow BG=GK\)

hay G là trung điểm của BK