K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

2 tháng 9 2019

ấn vào câu hỏi sẽ xuất hiện là câu hỏi tương tự và ấn vào đó

2 tháng 9 2019

Anh or chị tham khảo:
Câu hỏi của Hà Thu Hằng - Toán lớp 8 - Học toán với OnlineMath

27 tháng 2 2018

a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)

Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)

Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)

Suy ra \(\widehat{MIC}=\widehat{MBC}\)

Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.

b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)

\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)

Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)

Vậy nên \(FI.FM=FE.FD\)

c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)

Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)

Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.

Suy ra \(\widehat{FIQ}=90^o\)

Vậy thì P, T, M thẳng hàng.

d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)

Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.

Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.

Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

0