Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của BD
Do đó: ME là đường trung bình
=>ME//CD
hay ID//ME
Xét ΔAME có
D là trung điểm của AE
DI//EM
Do đó:I là trung điểm của AM

a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{BD}{2}\)
Xét ΔMAE có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
hay IA=IM
b: Xét ΔAME có
I là trung điểm của AM
D là trung điểm của AE
Do đó: ID là đường trung bình của ΔAME
Suy ra: \(ID=\dfrac{ME}{2}\)
\(\Leftrightarrow BD=4\cdot ID\)

a: xét tứ giác AEMF có \(\hat{AEM}=\hat{AFM}=\hat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: AEMF là hình chữ nhật
=>AM cắt EF tại trung điểm của mỗi đường
=>O là trung điểm chung của AM và EF
M đối xứng K qua AC
=>AC⊥MK tại trung điểm của MK
mà AC⊥MF
và MK,MF có điểm chung là M
nên M,K,F thẳng hàng
=>AC⊥MK tại F và F là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Ta có: AEMF là hình chữ nhật
=>MF=AE
mà MK=2MF và AB=2AE
nên MK=AB
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
c:
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\frac{BC}{2}\)
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
=>AMCK là hình bình hành
=>AK//CM
=>AK//BC
=>AKCB là hình thang
Hình bình hành AMCK có AC⊥MK
nên AMCK là hình thoi
=>CA là phân giác của góc MCK
Hình thang AKCB trở thành hình thang cân khi \(\hat{KCB}=\hat{ABC}\)
=>\(\hat{ABC}=2\cdot\hat{ACB}\)
ΔABC vuông tại A
=>\(\hat{ABC}+\hat{ACB}=90^0\)
=>\(\hat{ACB}+2\cdot\hat{ACB}=90^0\)
=>\(3\cdot\hat{ACB}=90^0\)
=>\(\hat{ACB}=\frac{90^0}{3}=30^0\)
=>\(\hat{ABC}=2\cdot30^0=60^0\)
Xét ΔMAB có MA=MB và \(\hat{ABM}=60^0\)
nên ΔMAB đều
=>MA=MB=AB=5cm
\(AM=\frac{BC}{2}\)
=>\(BC=2\cdot AM=10\left(\operatorname{cm}\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-5^2=100-25=75\)
=>\(AC=5\sqrt3\left(\operatorname{cm}\right)\)
ΔABC vuông tại A
=>\(S_{ABC}=\frac12\cdot AB\cdot AC=\frac12\cdot5\cdot5\sqrt3=\frac{25\sqrt3}{2}\left(\operatorname{cm}^2\right)\)

Gọi F là trung điểm của EC
+ ΔBEC có \(\left\{{}\begin{matrix}BM=MC\\CF=EF\end{matrix}\right.\)
=> MF là đg trung bình của ΔBEC
=> MF // BE => MF // DE
+ ΔAMF có \(\left\{{}\begin{matrix}AD=DM\\DE//MF\end{matrix}\right.\)
=> DE là đg trung bình của ΔAMF
=> AE = EF => \(AE=\frac{1}{2}EC\)

Ta có: $I$ là trung điểm $BD$
Vì $I,K$ là trung điểm hai đường chéo hình thang $BCDE$ nên:
\(IK=\dfrac{(BC-DE)}{2}=\dfrac{1}{4}BC\\ \Rightarrow BC=4IK(đpcm)\)