Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H
trong tam giac ABD ta co \(\tan B=\frac{AD}{BD}\)
ADC co \(\tan C=\frac{AD}{CD}\)
suy ra \(\tan B\cdot\tan C=\frac{AD^2}{BD\cdot CD}\) (1)
\(\Delta BDH~\Delta ADC\left(g.g\right)\)\(\Rightarrow\frac{DH}{DC}=\frac{DB}{AD}\Rightarrow BD\cdot DC=DH\cdot AD\)(2)
tu (1)(2) \(\Rightarrow\tan B\cdot\tan C=\frac{\left(2DH\right)^2}{DH\cdot2DH}=2\)
trong tam giac ABD ta co tanB=ADBD
ADC co tanC=ADCD
suy ra tanB·tanC=AD2BD·CD (1)
ΔBDH~ΔADC(g.g)⇒DHDC =DBAD ⇒BD·DC=DH·AD(2)
tu (1)(2) ⇒tanB·tanC=(2DH)2DH·2DH =2
+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.
\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)
Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.
\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)
Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)
+) Ta có \(\widehat{ADC}=\widehat{ABC}\) (Hai góc nội tiếp cùng chắn cung AC)
Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\)
nên \(\widehat{ADC}=\widehat{HMN}\)
Chúng lại ở vị trí so le trong nên DC // HM
Ta có \(DC\perp AC\Rightarrow HM\perp AC\)
Gọi J là trung điểm AB
Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC
Vậy nên \(HM\perp IJ\)
Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.
Vậy thì IM = IH.
Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.
e làm chứng minh dc góc NPI = BAC=60 độ, thế e ghi tương tự vs góc PNI=BAC=60 độ dc k ạ
a) Xét tứ giác OCDB có
\(\widehat{OBD}+\widehat{OBC}=180^0\)
Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Ke BH vuong goc voi Ac tai I. Goc ACD+DAC=90 do. Goc DAC+AHI=90 do. Ma AHI=BHD(doi dinh).=>BHD=ACD.=>tanBHD=tanACD=BD/HD.
=>tanB.tanC=AD/BD.BD/HD=2