Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\S=\frac{1}{2}ac.sinB\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\sinB=\frac{2S}{ac}\end{matrix}\right.\)
\(\Rightarrow cotB=\frac{cosB}{sinB}=\frac{\left(a^2+c^2-b^2\right).ac}{2ac.2S}=\frac{a^2+c^2-b^2}{4S}\)
b/ Tương tự: \(cotA=\frac{b^2+c^2-a^2}{4S}\) ; \(cotC=\frac{a^2+b^2-c^2}{4S}\)
\(\Rightarrow cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
a) Sin (B+C) = Sin (180-A) = Sin A
b) Cos (A+B) = Cos ( 180-A) = Cos A
c) Sin (\(\dfrac{B+C}{2}\)) = Sin \(\left(\dfrac{180-A}{2}\right)\)= Sin \(\left(90^0-\dfrac{A}{2}\right)\)= Cos \(\dfrac{A}{2}\)
d) Tan \(\left(\dfrac{A+C}{2}\right)\)= Tan\(\left(\dfrac{180-B}{2}\right)\)=Tan\(\left(90^0-\dfrac{B}{2}\right)\)= Cot \(\dfrac{B}{2}\)
\(\frac{sinA}{cosA}+\frac{sinB}{cosB}=\frac{2cos\frac{C}{2}}{sin\frac{C}{2}}\Leftrightarrow\frac{sinA.cosB+cosA.sinB}{cosA.cosB}=\frac{2sin\frac{C}{2}.cos\frac{C}{2}}{sin^2\frac{C}{2}}\)
\(\Leftrightarrow\frac{sin\left(A+B\right)}{cosA.cosB}=\frac{2sinC}{1-cosC}\Leftrightarrow\frac{sinC}{cosA.cosB}=\frac{2sinC}{1-cosC}\)
\(\Leftrightarrow1-cosC=2cosA.cosB=cos\left(A+B\right)+cos\left(A-B\right)\)
\(\Leftrightarrow1-cosC=-cosC+cos\left(A-B\right)\)
\(\Leftrightarrow cos\left(A-B\right)=1\Rightarrow A-B=0\Rightarrow A=B\)
\(\Rightarrow\) Tam giác ABC cân tại C
\(\frac{cos^2A+cos^2B}{sin^2A+sin^2B}=\frac{1}{2}\left(cot^2A+cot^2B\right)\)
\(\Leftrightarrow2cos^2A+2cos^2B=\left(sin^2A+sin^2B\right)\left(cot^2A+cot^2B\right)\)
\(\Leftrightarrow2cos^2A+2cos^2B=cos^2A+cos^2B+sin^2A.cot^2B+sin^2B.cot^2A\)
\(\Leftrightarrow cos^2A+cos^2B=\frac{sin^2A.cos^2B}{sin^2B}+\frac{sin^2B.cos^2A}{sin^2A}\)
\(\Leftrightarrow cos^2A\left(\frac{sin^2B}{sin^2A}-1\right)=cos^2B\left(1-\frac{sin^2A}{sin^2B}\right)\)
\(\Leftrightarrow\frac{cos^2A\left(sin^2B-sin^2A\right)}{sin^2A}=\frac{cos^2B\left(sin^2B-sin^2A\right)}{sin^2B}\)
\(\Leftrightarrow cot^2A\left(sin^2B-sin^2A\right)=cot^2B\left(sin^2B-sin^2A\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2B=sin^2A\\cot^2A=cot^2B\end{matrix}\right.\) \(\Rightarrow A=B\)