Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg ahd và tg ake
+có : ae+ec=ac
và ad+db=ab
mà :ad=ae ; bd=ce
=>AE=AD (1)
+có : góc AHD+ gócDHB=gócADH
và góc AKE+ góc EKC= góc AKC
=> gócAHD=gócAEK(2)
+ tg bdh=tg eck(vì : EC=BD; góc B= góc B và vuông tại D và D =90)
=>DB=EK (3)
Từ (1)(2) và (3) suy ra : tg AHD= tg AKEB(cgc)
Các tam giác cân ABC và ADC có chung góc ở đỉnh ∠A nên ∠B1 = ∠ADE. Mà hai góc này ở vị trí đồng vị nên suy ra BC // DE.
- doandieungoc
- 30/06/2020
Đáp án:
Giải thích các bước giải:
Xét ΔACD và ΔACDcó:
Góc DCE là góc ngoài đỉnh C của tam giác ấy, nên:
DCE^>CDA^
DCE^>CDA^
Hai tam giác BCD và EDC có hai cạnh bằng nhau từng đôi một
BD = EC (theo giả thiết)
CD là cạnh chung
Hai góc xen giữa hai cạnh ấy không bằng nhau
DCE^ >^CDB
DCE^>CDB^
=> hai cạnh đối diện với hai góc ấy không bằng nhau.
Ta suy ra: BC < DE.
tam giác ABC cân tại A-->góc ABC=góc ACB (đ/lí tam giác cân)
góc ACE+góc ACB=180 độ (kề bù)
góc ABD+góc ABC=180 độ (kề bù)
mà góc ABC=góc ACB (cmt)
-->góc ACE=góc ABD (bắc cầu)
xét tam giác ABD và tam giác ACE có:
+AB=AC(gt)
+BD=CE(gt)
+góc ABD=góc ACE(cmt)
vậy tam giác ABD=tam giác ACE(cgc)
suy ra AD=AE
AD=AE(cmt)-->tam giác ADE cân tại A
thank you!Thanks for ticking me! I didn't expect I was right, I also think you will tick later like everyone else! I didn't expect you to tick early>))
Xét ΔABM và ΔACM có:
AB = AC ( giả thiết)
BM = CM ( vì M là trung điểm BC )
AM chung
⇒ ΔABM = ΔACM (c.c.c)
⇒ ∠AMB = ∠AMC (hai góc tương ứng)
Mà ∠AMB + ∠AMC = 180o
⇒ ∠AMB = ∠AMC = 90o hay AM ⊥ BC
Chứng minh tương tự ta có: IM ⊥ BC
⇒ A, I, M thẳng hàng (Qua 1 điểm ta kẻ được duy nhất 1 đường thẳng vuông góc với đường thẳng cho trước)