Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi I là trung điểm của AB
Trong \(\Delta\)BDC có: E là trung điểm BC; F là trung điểm BD => EF là đường trung bình \(\Delta\)BDC
=> EF // CD hay EF // DH. Xét \(\Delta\)FAE: D là trung điểm AF; DH // EF; H thuộc AE
=> H là trung điểm AE.
Xét \(\Delta\)EAC: G là trung điểm AC; H là trung điểm AE => GH là đường trung bình \(\Delta\)EAC
=> GH // EC hay GH // BC. Xét \(\Delta\)ABC:
G thuộc AC; GH // BC => GH đi qua trung điểm I của AB (1)
Hoàn toàn tương tự: EK đi qua trung điểm I của AB (2)
Từ (1) và (2) => 3 đường AB; GH; EK đồng qui (đpcm).
b) Xét \(\Delta\)ABG: I là trung điểm AB; K là trung điểm BG (c/m giống câu a)
=> IK=1/2.AG. Tương tự: EK=1/2.CG. Mà AG=CG => IK=EK => K là trg điểm IE
Xét \(\Delta\)AEI: K là trg điểm IE; H là trung điểm AE => KH là đg trg bình \(\Delta\)AEI
=> KH=1/2.AI. Lại có: AI=1/2.AB => KH=1/4.AB hay AB=4.KH (đpcm).
a) Gọi I là trung điểm của AB
Trong \(\Delta\)BDC có: E là trung điểm BC; F là trung điểm BD => EF là đường trung bình \(\Delta\)BDC
=> EF // CD hay EF // DH. Xét \(\Delta\)FAE: D là trung điểm AF; DH // EF; H thuộc AE
=> H là trung điểm AE.
Xét \(\Delta\)EAC: G là trung điểm AC; H là trung điểm AE => GH là đường trung bình \(\Delta\)EAC
=> GH // EC hay GH // BC. Xét \(\Delta\)ABC:
G thuộc AC; GH // BC => GH đi qua trung điểm I của AB (1)
Hoàn toàn tương tự: EK đi qua trung điểm I của AB (2)
Từ (1) và (2) => 3 đường AB; GH; EK đồng qui (đpcm).
b) Xét \(\Delta\)ABG: I là trung điểm AB; K là trung điểm BG (c/m giống câu a)
=> IK là đg trg bình \(\Delta\)ABG
=> IK=1/2.AG. Tương tự: EK=1/2.CG. Mà AG=CG => IK=EK => K là trg điểm IE
Xét \(\Delta\)AEI: K là trg điểm IE; H là trung điểm AE => KH là đg trg bình \(\Delta\)AEI
=> KH=1/2.AI. Lại có: AI=1/2.AB => KH=1/4.AB hay AB=4.KH (đpcm).