Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi I là trung điểm của AB
Trong \(\Delta\)BDC có: E là trung điểm BC; F là trung điểm BD => EF là đường trung bình \(\Delta\)BDC
=> EF // CD hay EF // DH. Xét \(\Delta\)FAE: D là trung điểm AF; DH // EF; H thuộc AE
=> H là trung điểm AE.
Xét \(\Delta\)EAC: G là trung điểm AC; H là trung điểm AE => GH là đường trung bình \(\Delta\)EAC
=> GH // EC hay GH // BC. Xét \(\Delta\)ABC:
G thuộc AC; GH // BC => GH đi qua trung điểm I của AB (1)
Hoàn toàn tương tự: EK đi qua trung điểm I của AB (2)
Từ (1) và (2) => 3 đường AB; GH; EK đồng qui (đpcm).
b) Xét \(\Delta\)ABG: I là trung điểm AB; K là trung điểm BG (c/m giống câu a)
=> IK=1/2.AG. Tương tự: EK=1/2.CG. Mà AG=CG => IK=EK => K là trg điểm IE
Xét \(\Delta\)AEI: K là trg điểm IE; H là trung điểm AE => KH là đg trg bình \(\Delta\)AEI
=> KH=1/2.AI. Lại có: AI=1/2.AB => KH=1/4.AB hay AB=4.KH (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D F E G H K I
a) Gọi I là trung điểm của AB
Trong \(\Delta\)BDC có: E là trung điểm BC; F là trung điểm BD => EF là đường trung bình \(\Delta\)BDC
=> EF // CD hay EF // DH. Xét \(\Delta\)FAE: D là trung điểm AF; DH // EF; H thuộc AE
=> H là trung điểm AE.
Xét \(\Delta\)EAC: G là trung điểm AC; H là trung điểm AE => GH là đường trung bình \(\Delta\)EAC
=> GH // EC hay GH // BC. Xét \(\Delta\)ABC:
G thuộc AC; GH // BC => GH đi qua trung điểm I của AB (1)
Hoàn toàn tương tự: EK đi qua trung điểm I của AB (2)
Từ (1) và (2) => 3 đường AB; GH; EK đồng qui (đpcm).
b) Xét \(\Delta\)ABG: I là trung điểm AB; K là trung điểm BG (c/m giống câu a)
=> IK là đg trg bình \(\Delta\)ABG
=> IK=1/2.AG. Tương tự: EK=1/2.CG. Mà AG=CG => IK=EK => K là trg điểm IE
Xét \(\Delta\)AEI: K là trg điểm IE; H là trung điểm AE => KH là đg trg bình \(\Delta\)AEI
=> KH=1/2.AI. Lại có: AI=1/2.AB => KH=1/4.AB hay AB=4.KH (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)