Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi I là trung điểm của AB
Trong \(\Delta\)BDC có: E là trung điểm BC; F là trung điểm BD => EF là đường trung bình \(\Delta\)BDC
=> EF // CD hay EF // DH. Xét \(\Delta\)FAE: D là trung điểm AF; DH // EF; H thuộc AE
=> H là trung điểm AE.
Xét \(\Delta\)EAC: G là trung điểm AC; H là trung điểm AE => GH là đường trung bình \(\Delta\)EAC
=> GH // EC hay GH // BC. Xét \(\Delta\)ABC:
G thuộc AC; GH // BC => GH đi qua trung điểm I của AB (1)
Hoàn toàn tương tự: EK đi qua trung điểm I của AB (2)
Từ (1) và (2) => 3 đường AB; GH; EK đồng qui (đpcm).
b) Xét \(\Delta\)ABG: I là trung điểm AB; K là trung điểm BG (c/m giống câu a)
=> IK=1/2.AG. Tương tự: EK=1/2.CG. Mà AG=CG => IK=EK => K là trg điểm IE
Xét \(\Delta\)AEI: K là trg điểm IE; H là trung điểm AE => KH là đg trg bình \(\Delta\)AEI
=> KH=1/2.AI. Lại có: AI=1/2.AB => KH=1/4.AB hay AB=4.KH (đpcm).
a) Gọi I là trung điểm của AB
Trong \(\Delta\)BDC có: E là trung điểm BC; F là trung điểm BD => EF là đường trung bình \(\Delta\)BDC
=> EF // CD hay EF // DH. Xét \(\Delta\)FAE: D là trung điểm AF; DH // EF; H thuộc AE
=> H là trung điểm AE.
Xét \(\Delta\)EAC: G là trung điểm AC; H là trung điểm AE => GH là đường trung bình \(\Delta\)EAC
=> GH // EC hay GH // BC. Xét \(\Delta\)ABC:
G thuộc AC; GH // BC => GH đi qua trung điểm I của AB (1)
Hoàn toàn tương tự: EK đi qua trung điểm I của AB (2)
Từ (1) và (2) => 3 đường AB; GH; EK đồng qui (đpcm).
b) Xét \(\Delta\)ABG: I là trung điểm AB; K là trung điểm BG (c/m giống câu a)
=> IK là đg trg bình \(\Delta\)ABG
=> IK=1/2.AG. Tương tự: EK=1/2.CG. Mà AG=CG => IK=EK => K là trg điểm IE
Xét \(\Delta\)AEI: K là trg điểm IE; H là trung điểm AE => KH là đg trg bình \(\Delta\)AEI
=> KH=1/2.AI. Lại có: AI=1/2.AB => KH=1/4.AB hay AB=4.KH (đpcm).
Sửa đề: F là hình chiếu của E trên AC
a: Xét ΔCAB có
E là trung điểm của CB
EF//AB
=>F là trung điểm của AC
Xét ΔCAB có
E là trung điểm của CB
ED//AC
=>D là trung điểm của AB
Xét ΔABC có EF//AB
nên EF/Ab=CE/CB=1/2
=>EF=1/2AB=DB
Xét tứ giác BDFE có
FE//BD
FE=BD
=>BDFE là hình bình hành
b: Xét ΔABC có AD/AB=AF/AC
nên DF//BC
=>DF//EH
ΔHAC vuông tại H có HF là trung tuyến
nên HF=AC/2
=>HF=ED
Xét tứ giác EHDF có
EH//DF
ED=HF
=>EHDF là hình thang cân
c: Xét tứ giác ABCN có
F là trung điểm chung của AC và BN
=>ABCN là hình bình hành
=>AN//CB
Xét tứ giác AMCE có
F là trung điểm chung của AC và ME
=>AMCE là hình bình hành
=>AM//CE
=>AM//CB
mà AN//CB
nên A,N,M thẳng hàng