K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

Hai tg ABN và tg ABC có chung đường cao từ B->AC nên

\(\frac{S_{ABN}}{S_{ABC}}=\frac{AN}{AC}=\frac{1}{2}\Rightarrow S_{ABN}=\frac{S_{ABC}}{2}\)

Hai tg ACM và tg ABC có chung đường cao từ C->AB nên

\(\frac{S_{ACM}}{S_{ABC}}=\frac{AM}{AB}=\frac{1}{2}\Rightarrow S_{ACM}=\frac{S_{ABC}}{2}\)

\(\Rightarrow S_{ABN}=S_{ACM}\) Hai tg này có phần diện tích chung là \(S_{AMON}\Rightarrow S_{BOM}=S_{CON}\)

Hai tg AOM và tg BOM có chung đường cao từ O->AB và AM=BM \(\Rightarrow S_{AOM}=S_{BOM}\)

Hai tg AON và tg CON có chung đường cao từ O->AC và AN=CN \(\Rightarrow S_{AON}=S_{CON}\)

\(\Rightarrow S_{AOM}+S_{BOM}=S_{AON}+S_{CON}\Rightarrow S_{ABO}=S_{ACO}\)

Hai tg ABO và tg ACO có chung AO nên

\(\frac{S_{ABO}}{S_{ACO}}=\)đường cao từ B->AO / đường cao từ C->AO = 1

Hai tg ABK và tg ACK có chung AK nên

\(\frac{S_{ABK}}{S_{ACK}}=\)đường cao từ B->AO / đường cao từ C->AO = 1 

Hai tg ABK và tg ACK lại có chung đường cao từ A->BC nên

\(\frac{S_{ABK}}{S_{ACK}}=\frac{BK}{CK}=1\Rightarrow BK=CK\)

bn tam khảo link này nha: https://olm.vn/hoi-dap/detail/79277830725.html [ bn cố gắng viết giống vậy na :)) ]

12 tháng 4 2020

Gửi từ 5 năm trc thì trả lời bây giờ có nghĩa gì nữa đâu bạn

31 tháng 12 2018

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

~ Tham khảo câu a ở link này nha bạn . ~

Câu hỏi của Nguyen Thi Lan Huong - Toán lớp 5 - Học toán với OnlineMath