Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ ON//BC; DM//BC
Xét ΔEDM có
O là trung điểm của ED
ON//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NO//KC
Do đó: O là trung điểm của AK
Xét tứ giác ADKE có
O là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Kẻ ON//BC; DM//BC
Xét ΔEDM có
O là trung điểm của ED
ON//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NO//KC
Do đó: O là trung điểm của AK
Xét tứ giác ADKE có
O là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Vẽ DM // BC và ON // BC
▲ADM cân tại A
=>AD=AM=CE
▲DME:Olà trung điểm của DE ,ON//DM=>N là trung điểm ME
=>N là trung điểm AC
Mà ON//BC nên O là trung điểm AK => ADKE là hbh
Ta có : AB = AC ( Tam giác ABC cân )
AD = CE ( gt ) ; => AD=CE=BD=AE
=> Tam giác ADE cân ( AD = AE )
Xét tam giác AIE và tam giác AID :
AD=AE ( Tam giác ADE cân )
AEI = ADI ( Tam giác ADE cân )
ID=IE ( I là trung điểm )
=> tam giác AIE = tam giác AID ( c-g-c )
A1 = A2 ( góc tương ứng )
Xét tam giác AEK và tam giác ADK :
AK cạnh chung
A1=A2 (cmt)
AD=AE ( Tam giác ADE cân )
=> Tam giác AEK = tam giác ADK ( c-g-c )
DKA = EAK ; Mà 2 góc này ở vị trí so le trong => AE//KD (1)
DAK = EKA ; Mà 2 góc này ở vị trí so le trong => DA//EK (2)
Từ (1) (2) => ADKE là HBH ( có 2 cặp cạnh đối // )
Kẻ ON//BC; DM//BC
Xét ΔEDM có
O là trung điểm của ED
ON//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NO//KC
Do đó: O là trung điểm của AK
Xét tứ giác ADKE có
O là trung điểm chung của AK và DE
nên ADKE là hình bình hành
a: Xét tứ giác ABNC có
O là trung điểm của BC
O là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
kẻ IN, DM // BC
=> IN // BC
tam giác EDM có trung điểm DE và IN // DM
=> IN là đường trung bình của tam giác EDM
=> N là trung điểm EM
ta có DM // BC => DMCB là hình thang
mà góc ABC = góc ACB
nên DMCB là hình thang cân
=> DB = MC
ta lại có : DB = AE
=> MC = AE
=> AE + EN = CM + MN
vậy N là trung điểm của AC
tam giác ACK có N là trung điểm AC và IN // bc
=> IN là đường trung bình tam giác AKB
=> I là trung điểm của AK
tứ giác ADKE có I là trung điểm DE và I trung điểm AK
nên ADKE là hình bình hành vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường
a: Xét tứ giác ABNC có
O là trung điểm chung của AN và BC
=>ABNC là hình bình hành
Hình bình hành ABNC có \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
b: CN//AB
\(C\in\)DN
Do đó: CD//AB
CN=AB
CN=CD
Do đó: AB=CD
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành