K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BEDF có 

DF//BE

ED//BF

Do đó: BEDF là hình bình hành

mà BD là đường phân giác

nên BEDF là hình thoi

Suy ra: DB là tia phân giác của góc EDF

b: Ta có: ED//BC

nên \(\widehat{AED}=\widehat{ABC};\widehat{ADE}=\widehat{ACB}\)

28 tháng 7 2017

A B C D x y F E

a) Ta có:góc EDB= góc FBD(ED//BF)

             góc FDB= góc EBD(DF//BE)

Mà góc FBD = góc EBD (BD là tia phân giác góc EBF)

=>góc EDB= góc FDB

=>DB là tia phân giác góc EDF

b)Vì ED//BC

=>góc AED=góc ABC(2 góc đồng vị)

   Vì DF//AB

=>góc ADE= góc ACB(2 góc đồng vị)

Vậy  góc AED=góc ABC; góc ADE =góc ACB

c)Xét tam giác EBD và tam giác FDB có:

góc BDE= góc DBF

BD chung

góc EDB= góc FBD

=>tam giác EBD=tam giác FDB(g-c-g)

=>góc BED = góc BFD

4 tháng 10 2017

cùi . đéo giải được bài lớp 6 của tao.

4 tháng 10 2017

A B C D F E y x

mk chỉ bt vẽ hình thui cn c/m mk chưa hc đến phần này ms hc từ vuông góc đến song song thui thông cảm

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0