K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

AD là phan giác

=>AMDN là hình vuông

2: BC=căn 3^2+4^2=5cm

AD là phân giác

=>DB/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

8 tháng 2 2018

A B C D M N E F K I O H

a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB =>  \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)

Lại có:  DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)

Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)

hay \(EF\)//\(BC\)(đpcm)

b) Dễdàng c/m được: Tứ giác AMDN là hình vuông =>  AM=MD=DN=AN

Gọi giao điểm của AE và FM là O

Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)

Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)

Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.

Xét \(\Delta\)AME và \(\Delta\)MDF:

AM=MD

^AME=^MDF         => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)

EM=DF (cmt)

Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900

Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE

Tương tự ta c/m được EN vuông góc với AF 

=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K

Vậy K là trực tâm tam giác AEF (đpcm).

c) Gọi BI giao AD tại H

K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC

hay AK vuông góc với BD

Xét tam giác BAD:

AK vuông góc BD

DM vuông góc AB          => I là trực tâm tam giác BAD

AK cắt DM tại I

=> BI vuông góc AD => IH vuông góc với AD. 

Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H

=> ^HID = 450 => ^BID=1350.

Vậy ^BID=1350.

2 tháng 4 2020

a) Xét \(\Delta EBC\)có \(\hept{\begin{cases}BE\perp AC\\DM\perp AC\end{cases}\Rightarrow}\)DM//EB => \(\frac{MC}{CE}=\frac{CD}{CB}\left(1\right)\)

Xét \(\Delta\)CFB có: \(\hept{\begin{cases}ND\perp FC\\BF\perp FC\end{cases}\Rightarrow}\)ND//BF => \(\frac{NC}{FC}=\frac{CD}{CB}\left(2\right)\)

Từ (1)(2) => \(\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow MC\cdot FC=CE\cdot NC\left(đpcm\right)\)

b) Xét tam giác FBC có:\(\hept{\begin{cases}QD\perp FB\\FC\perp FB\end{cases}\Rightarrow}\)QD//FC => \(\frac{QF}{FB}=\frac{DC}{BD}\)

mà \(\frac{DC}{BD}=\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow\frac{QF}{FB}=\frac{MC}{CE}=\frac{NC}{FC}\)hay \(\frac{QF}{FB}=\frac{NC}{CF}=\frac{MC}{CE}\)

=> Q,N,M thẳng hàng mà \(\frac{NC}{CF}=\frac{MC}{CE}\)=> MN//EF => QM//EF (đpcm)

c) Xét tam giác BEC có \(\hept{\begin{cases}PD\perp BE\\CE\perp BE\end{cases}}\)=> PD//EC => \(\frac{PE}{EB}=\frac{DC}{BC}\)

mà \(\frac{DC}{CB}=\frac{NK}{CF}=\frac{MC}{CE}=\frac{QF}{FB}\)

=> M,N,Q thẳng hàng (đpcm)

NM
13 tháng 11 2020

"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e

31 tháng 10 2021

sai thế nào đc