Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) vì góc A+B+C=\(80^O\)
⇒góc B+C<\(180^O\)
⇒\(\frac{B}{2}+\frac{C}{2}< 90^O\)
⇒góc OBC+OCB <\(90^O\)
mà góc O+OBC+OCB=\(180^O\)
⇒góc O > \(90^O\)
vậy góc O tù (góc BOC)
Câu 1 :
Ta có: Có DH _l_ EF (gt)
=> H là hình chiếu của D
mà DE < DF (gt)
=> HE < HF (quan hệ đường xiên hình chiếu)
2. Vì HE < HF (từ 1)
=> ME < MF (quan hệ đx, hình chiếu)
3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:
DH: chung
H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)
nhưng HE < HF (từ 1)
=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)
Câu 1:
A B C H D
a) So sánh ∠B và ∠C ?
Vì AB < AC (gt) ⇒ ∠C < ∠B
b) So sánh BH và CH ?
Trên ta BC lấy điểm D sao cho BH = HD
Xét hai tam giác vuông ABH và ADH có:
BH = DH (gt)
AH : cạnh chung
Do đó: ΔABH = ΔADH (hai cạnh góc vuông)
⇒ BH = HD (hai cạnh tương ứng)
Mà CH = CD + DH ( do D nằm giữa H và C)
⇒ CH > BH .
Câu 2 để tớ đi học về rồi làm cho ~
b, Câu này chắc bạn ghi nhầm đề rồi : đáng ra là AB<AC nha.
Xét tam giác ABC có : AB<AC nên góc ACB<ABC
=> \(\widehat{\frac{ACB}{2}}< \widehat{\frac{ABC}{2}}\) => \(\widehat{OBC}>\widehat{OCB}\)(1)
Xét tam giác OBC có (1) nên OC>OB.
a, Nối AO cắt BC tại I
Ta có : \(\widehat{BOI}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\) ( góc ngoài tại đỉnh O của tam giác AOB )
\(\widehat{COI}=\widehat{\frac{A}{2}}+\widehat{\frac{C}{2}}\) Mà góc BOC=BOI+COI => \(\widehat{BOC}=\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}\right)+\widehat{\frac{A}{2}}=90^o+\widehat{\frac{A}{2}}=90^o+35^o=125^o\)