Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B
Áp dụng định lý hàm số sin, ta có B C sin B A C ^ = A C sin A B C ^ = A B sin A C B ^ = 2 R
⇔ B C sin 75 0 = A C sin 45 0 = A B sin 60 0 = 2 R ⇔ A B = 2 R . sin 60 0 = R 3 B C = 2 R . sin 75 0 = 6 + 2 2 R A C = 2 R . sin 45 0 = R 2
Lại có
S Δ A B C = 1 2 A B . A C . s i n B A C ^ = 1 2 B H . A C ⇔ B H = A B . s i n B A C ^ = R 3 . sin 75 0
⇔ B H = 3 6 + 2 4 R .
Khi quay Δ A B C quanh AC thì Δ B H C tạo thành hình nón tròn xoay (N) có đường sinh l = B C = 6 + 2 2 R , bán kính đáy r = B H = 3 6 + 2 4 R .
Diện tích xung quanh hình nón (N) là
S x q = π r l = π 3 6 + 2 4 R . 6 + 2 4 R = 3 + 2 3 2 π R 2
(đvdt).
![](https://rs.olm.vn/images/avt/0.png?1311)
∆ A B C : B C = 2 R sin 75 o = R 2 6 + 2 ∆ B H C : B H = B C sin 60 o = R 6 4 3 + 1 S x q = π . BH . BC = πR 2 3 4 3 + 1 2
Đáp án D
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B
Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì B A C ^ = 90 o nên BC = 5. Khi đó
S 1 S 2 = π . 4 . 5 π . 3 . 5 = 4 3
Đáp án A
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B.
Khi quay tam giác ABC quanh cạnh AB, ta được khối nón có đỉnh A, đường sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B.
Khi quay tam giác ABC quanh cạnh AB, ta được khối nón có đỉnh A, đường sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Nón có
r = A B = 3 , h = A C = 4 , l = r 2 + h 2 = 5 ⇒ S t p = πr r + l = 3 π 3 + 5 = 24 π .
Chọn đáp án B.
Đáp án A.
Áp dụng định lý Sin, ta có 2 R = A B sin A C B ^ ⇒ A B = 2 R . sin 60 ° = R 3 .
Và 2 R = B C sin B A C ^ ⇒ B C = 2 3 + 1 2 . Xét ∆ B H C vuông tại H, ta có
sin A C B ^ = B H B C ⇒ B H = sin 60 ° . B C = 6 + 3 2 4 R .
cos A C B ^ = C H B C ⇒ C H = cos 60 ° . B C = 6 + 2 4 R .
Khi quay ∆ B H C quanh trục AC ta được hình nón tròn xoay có bán kính đường tròn đáy r = BH và chiều cao h = C H = 6 + 2 4 R . Vậy S x q = πrl = 3 + 2 3 2 πR 2