Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>B,F,E,C cùng thuộc một đường tròn
b: Xét (O) có
ΔABA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔABA' vuông tại B
=>BA'\(\perp\)AB
mà CH\(\perp\)AB
nên BA'//CH
Xét (O) có
ΔACA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔACA' vuông tại C
=>AC vuông góc CA'
mà BH vuông góc AC
nên BH//A'C
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
c, Gọi K là giao điểm của DG và IF
Vì D là giao điểm của 2 tiếp tuyến
-=>\(AC\perp OD\)
=>ADO=CAB=FAE
=> tam giác ADO đồng dạng tam giác EAF
=> \(\frac{AD}{EA}=\frac{AO}{EF}\)
=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)
=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )
=> ABD=IFE
=> tứ giác KBEF nội tiếp
=> FBK=90độ
=> \(GK\perp IF\)
Lại có \(IE\perp FG\),IE giao GK tại B
=> B là trực tâm của tam giác IFG
MÀ B cố định
=> ĐPCM
b.
Do AP là đường kính \(\Rightarrow\)góc \(\widehat{ATP}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ATP}=90^0\) hay \(\widehat{ATH}=90^0\)
\(\Rightarrow\) 3 điểm T, E, F cùng nhìn AH dưới 1 góc vuông nên T, E, F cùng thuộc đường tròn đường kính AH
Hay 5 điểm đã cho đồng viên