K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó:BCEF là tứ giác nội tiếp

b: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

DO đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AE\cdot AC\)

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc MFB=góc MCE

Xét ΔMFB và ΔMCE có

góc MFB=góc MCE

góc M chung

=>ΔMFB đồng dạng với ΔMCE

=>MF/MC=MB/ME

=>MF*ME=MB*MC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: BFEC nội tiếp

=>góc HFE=góc HBC

=>góc HFE=góc HNM

=>FE//MN

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK=AD*2R