Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\widehat{HBD}=\widehat{EBC}=\widehat{CAD}$ (cùng phụ góc $\widehat{ACB}$)
$\widehat{CAD}=\widehat{CAK}=\widehat{KBC}=\widehat{KBD}$ (góc nt chắn cung $CK$)
$\Rightarrow \widehat{HBD}=\widehat{KBD}$
Xét tam giác vuông tại $D$ là $HBD$ và $KBD$ có:
$\widehat{HBD}=\widehat{KBD}$ (cmt)
$BD$ chung
$\Rightarrow \triangle HBD=\triangle KBD$ (g.c.g)
$\Rightarrow HD=KD$ (đpcm)
https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html
Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)
Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)
Tương tự => EI = 1/2 BC (3)
Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC
=>E, B, C, F thuộc một đường tròn
Hình tự vẽ nha
a) Vì A,B,D thuộc ( O; AD/2 )
\(\Rightarrow\widehat{ABD}=90^0\)
Vì \(EF\perp AD\Rightarrow\widehat{EFA}=90^0\)
Xét tứ giác ABEF có góc \(\widehat{ABE}=\widehat{AFE}=90^0\)
mà 2 góc này ở vị trí đối nhau trong tứ giác ABEF
\(\Rightarrow ABEF\)nội tiếp ( dhnb )
b) Vì A,C,D thuộc ( O; AD/2 )
\(\Rightarrow\widehat{ECD}=90^0\)
Xét tứ giác EFDC có: \(\widehat{ECD}=\widehat{EFD}=90^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác EFDC
\(\Rightarrow EFDC\)nội tiếp
\(\Rightarrow\widehat{ECF}=\widehat{EDF}\)( cùng chắn cung EF )
Lại có: \(\widehat{BCA}=\widehat{BDA}\left(=\frac{1}{2}sđ\widebat{AB}\right)\)
\(\Rightarrow\widehat{BCA}=\widehat{ACF}\)
=> AC là phân giác góc BCF
Xét đường tròn (O) có
sđ\(\widehat{BCK}=\)sđ\(\widehat{BAK}\) (Góc nội tiếp đường tròn cùng chắn cung BK) (1)
Xét tứ giác BFEC có F; E cùng nhìn BC dưới 1 góc vuông => E; F cùng nằm trên đường tròn đường kính BC
=> sđ\(\widehat{BCF}=\)sđ\(\widehat{FEB}\) (Góc nội tiếp đường tròn cùng chắn cung BF) (2)
Xét tứ giác AFHE có E và F cùng nhìn AH dưới 1 góc vuông => E; F cùng nằm trên đường tròn đường kính AH
=> sđ\(\widehat{BAK}=\)sđ\(\widehat{FEB}\) (Góc nội tiếp đường tròn cùng chắn cung HF) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{BCF}=\widehat{BCK}\) => BC là phân giác của \(\widehat{KCH}\)
Ta có \(BC\perp KH\)
=> \(\Delta KCH\) cân tại C (Tam giác có đường phân giác đồng thời là đường cao thì tg đó là tg cân)
\(\Rightarrow DH=DK\) (Trong tg cân đường cao đồng thời là đường trung tuyến)