Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tứ giác OCDB có
\(\widehat{OBD}+\widehat{OBC}=180^0\)
Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
ΔBCA nội tiếp
AB là đường kính
=>ΔBAC vuông tại C
\(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Xét ΔABC vuông tại C có sin CAB=CB/AB=1/2
nên góc CAB=30 độ
=>góc CBA=60 độ
b: ΔOAC cân tại O
mà OD là đường cao
nên OD là trung trực của AC
c: Xét ΔDAO và ΔDCO có
DA=DC
AO=CO
DO chung
=>ΔDAO=ΔDCO
=>góc DCO=90 độ
=>DC là tiếp tuyến của (O)
d: goc DAI+góc OAI=90 độ
góc CAI+góc OIA=90 độ
mà góc OAI=góc OIA
nên góc DAI=góc CAI
=>AI là phân giác của góc CAD
=>I là tâm đường tròn nội tiếp ΔADC