Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
a, Xét \(\Delta BAC\)có OA = OB = OC ( = R )
=> \(\Delta BAC\)vuông tại A
\(\Rightarrow\widehat{BAC}=90^o\)
b, Xét \(\Delta AHO\) có IA = IH = IO (Bán kính (I))
=> \(\Delta AHO\)vuông tại H
=> \(\widehat{AHO}=90^o\)
Tương tự \(\widehat{AKO}=90^o\)
Tứ giác AHOK có 3 góc vuông nên là hcn
=> Trung điểm I của OA cũng là trung điểm của HK
Vì OA = OB ( = R )
=> \(\Delta AOB\)cân tại O
\(\Rightarrow\widehat{A_1}=\widehat{B_1}\)
Xét \(\Delta AHK\)vuông tại A có I là trung điểm HK
=> IA = IH
\(\Rightarrow\Delta AIH\)cân tại I
\(\Rightarrow\widehat{A_1}=\widehat{H_1}\)
Do đó \(\widehat{H_1}=\widehat{B_1}\)
=> HI // BC (so le trong)
Tương tự IK // BC
Do đó H , I , K thẳng hàng (tiên đề Ơ-clit)
c, Xét \(\Delta AOB\)cân tại O có OH là đường cao
=> OH là đường trung trực của AB
Mà điểm D thuộc OH
=> DA = DB
Tương tự EA = EC
Khi đó BD + CE = DA + EA = DE (DDpcm0+)
d,Gọi G là trung điểm DE
Mà tam giác DOE vuông tại D nên G là tâm (DOE)
Dễ thấy BD , CE là tiếp tuyến (O)
Nên BD , CE cùng vuông với BC
=> BD // CE
=> BDEC là hình thang
Mà GO là đường trung bình (dễ)
=> GO // BD
=> GO vuông với BC
Mà O thuộc BC
=> (DOE) tiếp xúc BC
Em xem lại đề bài này nhé.
d. Do S, H cùng thuộc AH nên nếu S, H ,E thẳng hàng thì E phải thuộc AH. Cô có hình vẽ phản chứng: