K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

VÀO TKHĐ ĐỂ XEM HÌNH VẼ

Ta có tứ giác AMBC nội tiếp ( O ) nên \(\widehat{KMB}=\widehat{ACB}\)

Mặt khác \(\widehat{BFC}=\widehat{BEC}=90^0\) nên tứ giác BFEC nội tiếp suy ra \(\widehat{KFB}=\widehat{BCE}\)

Khi đó \(\widehat{KMB}=\widehat{KFB}\) nên tứ giác KMFB nội tiếp

Dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{FBC}=\widehat{FEA}\Rightarrow\) tứ giác EFCB nội tiếp

=> \(\widehat{HMA}=90^0\Rightarrow MH\perp AK\)

Nếu bạn gọi J là trung điểm của BC và chứng minh JM vuông góc AK thì bài toán khó hơn nhiều

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

29 tháng 3 2021

làm câu d) kìa daugau

7 tháng 4 2023

Ta có tứ giác AMBC nội tiếp ( O ) nên ���^=���^

Mặt khác ���^=���^=900 nên tứ giác BFEC nội tiếp suy ra ���^=���^

Khi đó ���^=���^ nên tứ giác KMFB nội tiếp

Dễ thấy BFEC là tứ giác nội tiếp nên ���^=���^⇒ tứ giác EFCB nội tiếp

=> 

 

 

a: góc BIH+góc BKH=180 độ

=>BIHK nội tiếp

b: OE vuông góc BC

=>sđ cung EB=sđ cung EC

=>góc BAE=góc CAE

Xét ΔAKB vuông tại K và ΔACF vuông tại  C có

góc ABK=góc AFC

=>ΔAKB đồng dạng với ΔACF

=>góc BAK=góc CAF

=>góc DAE=góc FAE

=>AE là phân giác của góc DAF

1 tháng 3 2019

Giải: 
Câu a) 
- 2 tam giác vuông ∆ADC và ∆BEC, có góc ADC = góc BEC = 90°, và 2 tam giác vuông này có chung góc C. Từ đây, suy ra => tam giác ∆ADC và tam giác ∆BEC đồng dạng (theo dạng tam giác đồng dạng: góc - góc - góc). Vì ∆ADC và ∆BEC đồng dạng nhau, nên ta có tỷ lệ: DC:EC = AC:BC. 
Từ đây, suy ra: DC:AC = CE:BC (1). 
Vì tam giác ∆ABC và ∆EDC có chung góc C, và vì kết quả ở (1), nên ta suy ra: ∆ABC và ∆EDC đồng dạng. Từ đây, ta biết được: góc DEC = ABC và góc EDC = góc BAC. 
Mà, góc AED + góc DEC = 180° => góc AED + góc ABC = 180° => tứ giác ABDE nội tiếp được một đường tròn (Theo tính chất của tứ giác nội tiếp: 2 góc đối bù nhau). 

Câu b) 
Chứng minh tương tự như câu a), ta sẽ có: 
∆DEC đồng dạng ∆DBF đồng dạng ∆AEF (1) 
Từ (1), ta suy ra: góc AEF = góc DEC, mà góc BEA = góc BEC = 90°, nên ta tính được góc BEF = góc BED, suy ra => BE là đường phân giác góc DEF. 
Giải tương tự như trên, ta sẽ chứng minh được AD, CF lần lượt là đường phân giác của các góc FDE và góc DFE. 
Từ đó, suy ra => H là tâm đường tròn nội tiếp tam giác DEF. 

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.