K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

A B C D E O I M N M P I

Gọi O là giao điểm DC và BE, I là giao điểm DC và AB

Ta có

góc DAB= góc EAC (=90)

góc BAC= góc BAC( góc chung)

-> góc DAB+ góc BAC= góc EAC+ góc BAC

-> góc DAC= góc BAE

Xét tam giác DAC và tam giác BAE ta có

AD=AB ( tam giác ABD vuông cân tại A)

AC=AE ( tam giác AEC vuông cân tại A)

góc DAC=góc BAE ( cmt)

-. tam giac DAC= tam giac BAE (c-g-c)

-> góc DAI= góc IBO ( 2 góc tương ứng)

ta có

góc DAI+ góc DIA=90 ( tam giác DAI vuông tại A)

góc DAI= góc IBO (cmt)

góc DIA= góc BIO ( 2 góc đối đỉnh)

--> góc BIO+góc IBO =90

Xét tam giác BIO ta có

góc BIO + góc IBO + góc BIO=180 ( tổng 3 góc trong tam giác)

90+ goc BIO=180

góc BIO=180-90=90

=> BE vuông góc DC tại O

Xét tam giác DBC ta có

M là trung điểm BD (gt)

P là trung điểm BC (gt)

-> MP la đường trung bình tam giác DBC

-> MP// DC và MP=1/2 DC

cmtt PN là đường trung bình tam giác BEC

-> PN//BE và PN=1/2BE

ta có

DC vuông góc BE tại O (cmt)

DC//MP (cmt)

-> MP vuông góc BE

mà BE// PN (cmt)

nên MP vuông góc PN tại P

--> tam giác MNP vuông tại P (1)

ta có

MP=1/2 DC (cmt)

PN=1/2BE (cmt)

DC=BE ( tam giac DAC = tam giac  BAE)

--> MP=PN (2)

từ (1) và (2) suy ra tam giac MNP vuông cân tại P

19 tháng 2 2018

đường trung bình lớp 8 mà

1 tháng 2 2016

mik làm dc r ko cần nữa đâu

 

5 tháng 3 2019

- Xét ΔDAC và ΔBAE ta có: 
AB=AD (ΔABD vuông cân ở A)
AC=AE (ΔACE vuông cân ở A)
DAC^=BAE^=BAC^+90o
→ΔDAC=ΔBAE (cgc)
→DC=BE (2 cạnh tương ứng) (1)

- Ta có P;M;N là trung điểm BC;BD;EC nên
+ PN là đường trung bình ΔBEC→PN=EB/2 (2);PN//EB
+ PM là đường trung bình ΔBCD→PM=DC/2 (3);PM//DC

+ từ (1); (2); (3) ta có PN=PM (*)

+ M1^M1^ là góc ngoài tại đỉnh M của ΔEMC nên M1^=E1^+MCE^=E1^+C1^+C2^

Mà C2^=E2^ (ΔDAC=ΔBAE). Thay vào ta có 

M1^=E1^+C1^+E2^=AEC^+C1^=90o (vì ΔAEC vuông cân ở A)

→DC⊥BE→DC⊥BE. Mà BE//PN→PN⊥DC

Mà PM//DC→PN⊥PM→MPN^=90o (*)(*)

+ Từ (*) và (*)(*) ta có ΔMPN vuông cân ở P (đpcm)