K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

A B C D E F H

a/

Ta có : \(\frac{HD}{AD}=\frac{S_{BHC}}{S_{ABC}}\) ; \(\frac{HE}{BE}=\frac{S_{AHC}}{S_{ABC}}\) ; \(\frac{HF}{FC}=\frac{S_{AHB}}{S_{ABC}}\)

\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{FC}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Ta có : \(1-\frac{HA}{AD}=\frac{HD}{AD}\) ; \(1-\frac{HB}{BE}=\frac{HE}{BE}\) ; \(1-\frac{HC}{CF}=\frac{HF}{CF}\)

Suy ra \(1-\frac{HA}{AD}+1-\frac{HB}{BE}+1-\frac{HC}{CF}=1\)

\(\Rightarrow\frac{HA}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=2\)

26 tháng 10 2016

b) cm: cos2A + cos2B + cos2C <1

xet tg BFC va tg BDA co:

 BFC=BDA=90O (GT)

BCF=BAD(cung phu voi FBD)

=> tg BFC dong dang tg BDA(g.g)

=>BF/BD=BC/BA

xet tg BDF va tg BAC co :

ABC: goc chung

BF/BD=BC/BA(cmt)

=>tg BDF dong dang tg BAC(c.g.c)

=> SBDF/SBAC=(DB/AB)2

ma tg ABD vuong tai D => cosB=DB/AB(ti so luong giac cua goc nhon)

=> SBDF/SABC=cos2A

tuong tu SCDE/SCAB=cos2C

=>cos2A+cos2B+cos2C =(SBDF+SAEF+SCDE)/SABC

ma SBDF+SAEF+SCDE=SABC-SDEF<SABC

=>cos2A+cos2B+cos2C<1

15 tháng 10 2019

H F D E A B C

a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)

SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A   (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))

b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC

=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC

20 tháng 7 2016

Trước tiên ta chứng minh bài toán phụ: công thức tính diện tích tam giác ABC có góc A nhọn \(S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\)

Giải: Kẻ đường cao BH thì \(BH=AB.\sin A\)do đó \(S_{\Delta ABC}=\frac{1}{2}AC.BH=\frac{1}{2}AC.AB.\sin A\)

Ta quay trở lại việc giải bài toán trên. (hình bạn tự vẽ nhé!)

Ta có \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BDF}-S_{CDE}\)suy ra \(\frac{S_{DEF}}{S_{ABC}}=1-\frac{S_{AEF}}{S_{ABC}}-\frac{S_{BDF}}{S_{ABC}}-\frac{S_{CDE}}{S_{ABC}}.\)

Áp dụng bài toán phụ ta có \(\frac{S_{AEF}}{S_{ABC}}=\frac{\frac{1}{2}AE.AF.\sin A}{\frac{1}{2}AB.AC.\sin A}=\frac{AE.AF}{AB.AC}=\frac{AF}{AC}.\frac{AE}{AB}\)

Trong các tam giác vuông ACF và ABE có: \(\cos A=\frac{AF}{AC}\)và \(\cos A=\frac{AE}{AB}\)

Do đó \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)tương tự \(\frac{S_{BDF}}{S_{ABC}}=\cos^2B\)và \(\frac{S_{CDE}}{S_{ABC}}=\cos^2C\)

Vậy \(\frac{S_{DEF}}{S_{ABC}}=\left(1-\cos^2A\right)-\cos^2B-\cos^2C=\sin^2A-\cos^2B-\cos^2C.\)

Hay \(S_{DEF}=\left(\sin^2A-\cos^2B-\cos^2C\right).S_{ABC}=\sin^2A-\cos^2B-\cos^2C\)(do \(S_{ABC}=1\)).

6 tháng 7 2016

a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)

Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)

Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)

b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\)\(S_{CEF}=S_{ABC}.cos^2C\)

Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)

Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)

Chúc em học tốt :)))

6 tháng 7 2016

minh k bit

15 tháng 8 2017

a)

\(\Delta EAB\) ~ \(\Delta FAC\) (g - g)

\(\Rightarrow\dfrac{EA}{FA}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\Rightarrow\Delta AEF\) ~ \(\Delta ABC\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE^2}{AB^2}=\cos^2A\)

\(\Rightarrow S_{AEF}=\cos^2A\left(S_{ABC}=1\right)\) (1)

Chứng minh tương tự, ta có: \(S_{BFD}=\cos^2B\) (2) và \(S_{CDE}=\cos^2C\) (3)

Cộng theo vế của (1) , (2) và (3) => đpcm

b)

\(S_{DEF}=S_{ABC}-\left(S_{AEF}+S_{BFD}+S_{CDE}\right)\text{ }\)

\(=1-\cos^2A-\cos^2B-\cos^2C\)

\(=\sin^2A-\cos^2B-\cos^2C\) (đpcm)