Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, O B M ^ = O E M ^ = 90 0
=> Tứ giác OEBM nội tiếp
b, Chứng minh được: ∆ABM:∆BDM (g.g) => M B 2 = M A . M B
c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác
=> M O C ^ = 1 2 B O C ^ = 1 2 s đ B C ⏜
Mà B F C ^ = 1 2 B C ⏜ => M O C ^ = B F C ^
d, O E M ^ = O C M ^ = 90 0 => Tứ giác EOCM nội tiếp
=> M E C ^ = M O C ^ = B F C ^ mà 2 góc ở vị trí đồng vị => FB//AM
Qua P dựng đường thẳng vuông góc với AM, đường thẳng này cắt EF tại Q'. Ta sẽ chỉ ra Q trùng Q'.
Thật vậy: Ta có ^BFC = ^BEC = 900 => Tứ giác BFEC nội tiếp đường tròn (BC)
=> ^AFE = ^ACB = ^BAP (Tính chất góc tạo bởi tiếp tuyến và dây) => EF // AP (2 góc so le trong bằng nhau)
Gọi H là trực tâm \(\Delta\)ABC, EF cắt BC tại R, AR cắt lại (O) ở S, kẻ đường kính AT của đường tròn (O)
Khi đó dễ thấy tứ giác BHCT là hình bình hành. Do M là trung điểm BC nên H,M,T thẳng hàng
Áp dụng hệ thức lượng trong đường tròn có: RF.RE = RB.RC = RS.RA => A,S,E,F cùng thuộc 1 đường tròn
Mà dễ có A,E,H,F cùng nằm trên đường tròn (AH) nên A,S,F,H,E cùng nằm trên (AH)
=> ^ASH = 900 => SH vuông góc AS. Lại có ST vuông góc AS nên S,H,T thẳng hàng
Kết hợp H,T,M thẳng hàng suy ra S,H,M thẳng hàng. Từ đây MH vuông góc AR tại S
Cũng có AH vuông góc RM nên H là trực tâm \(\Delta\)RAM => RH vuông góc AM
Mà PQ' cũng vuông góc AM nên RH // PQ'. Nếu ta gọi BE giao PQ' tại G thì RH // PG
Áp dụng ĐL Thales, ta có các tỉ số: \(\frac{BH}{HG}=\frac{BR}{RP}\)(Vì PH // PG) \(=\frac{BF}{FA}\)(Vì EF // AP)
Do đó AG // FH (ĐL Thales đảo) hay CH // AG => \(\frac{EC}{EA}=\frac{EH}{EG}\)(Hệ quả ĐL Thales)
Chú ý RH // PQ' hay RH // GQ' suy ra \(\frac{EH}{EG}=\frac{ER}{EQ'}\).Từ đó \(\frac{EC}{EA}=\frac{ER}{EQ'}\)=> AQ' // CR (ĐL Thales đảo)
Khi đó, đường thẳng qua A song song với BC cắt EF tại Q'. Do vậy Q' trùng Q
Điều này tức là PQ vuông góc AM (đpcm).