K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác BEDC có:
ˆBEC=ˆBDCBEC^=BDC^
ˆBECBEC^và ˆBDCBDC^ cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp 
b) Do BEDC là tứ giác nội tiếp nên: ˆBED+ˆBCD=180oBED^+BCD^=180o
Mà ˆBED+ˆDEA=180o⇒ˆBCD=ˆDEABED^+DEA^=180o⇒BCD^=DEA^(*)
Mặt khác ta có:
ˆxAB=ˆACBxAB^=ACB^(cùng chắn cung AB)
hay ˆxAE=ˆBCDxAE^=BCD^(**)
Từ (*) và (**) suy ra ˆDEA=ˆxAEDEA^=xAE^
=> xy song song với ED (2 góc sole trong) (đpcm)

c) Do tứ giác BEDC là tứ giác nội tiếp
Mà ˆEBDEBD^và ˆECDECD^cùng nhìn cạnh ED
=> ˆEBD=ˆECDEBD^=ECD^(đpcm)

Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD

Có thể giải như sau: 
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2 
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2 
Dễ tính được BC = RV3 => ED = RV3/2 
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD) 
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)

p/s:tham khảo

31 tháng 3 2018

sai đề câu a thì phải bn ak

a: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

c Ta có: BEDC là tứ giác nội tiếp

nên \(\widehat{EBD}=\widehat{ECD}\)

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C

\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C

Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)

Ta có: BEDC là tứ giác nội tiếp

=>\(\widehat{DEC}=\widehat{DBC}\)

=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//D'E'

Kẻ tiếp tuyến Ax của (O')

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{xAB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)

nên \(\widehat{xAB}=\widehat{AED}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//ED

Ta có: Ax//ED

OA\(\perp\)Ax

Do đó: OA\(\perp\)ED

c: Xét (O) có

ΔABA' nội tiếp

A'A là đường kính

Do đó: ΔABA' vuông tại B

=>AB\(\perp\)BA'

Xét (O) có

ΔACA' nội tiếp

A'A là đường kính

Do đó: ΔACA' vuông tại C

=>AC\(\perp\)CA'

Ta có: AC\(\perp\)CA'

BH\(\perp\)AC

Do đó:  BH//A'C

Ta có: AB\(\perp\)BA'

CH\(\perp\)AB

Do đó: CH//BA'

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

=>BC cắt HA' tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HA'

=>H,I,A' thẳng hàng

a: Xét tứ giác BCDE có

góc BEC=góc BDC=90 độ

=>BCDE là tứ giác nội tiếp

b: Xet ΔBEH vuông tại E và ΔCEA vuông tại E có

góc EBH=góc ECA

=>ΔBEH đồng dạng với ΔCEA

=>EB/EC=EH/EA

=>EB*EA=EH*EC

c: Khi A di chuyển thì A vẫn nằm trên (O)

Bán kính đường tròn ngoại tiếp của tam giác vẫn là R=OA=OB=OC thì chắc chắn ko đổi do BC cố định rồi

a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

\(\widehat{HCD}=\widehat{ABD}\)

Do đó: ΔDHC\(\sim\)ΔDAB

Suy ra: DH/DA=DC/DB

hay \(DH\cdot DB=DA\cdot DC\)