K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

A B C D E O H M N K

Gọi K là giao của AO với đường tròn

Gọi M và N lần lượt là giao của BD với AC bà CE với AB. Xét tg vuông ABM và ACN có \(\widehat{BAC}\) chung

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Mà sđ\(\widehat{ABD}=\frac{1}{2}\) sđ cung AD và sđ \(\widehat{ACE}=\frac{1}{2}\) sđ cung AE => sđ cung AD = sđ cung AE (1)

Ta có sđ cung AEK = sđ cung ADK (2)

sđ cung EK = sđ cung AEK - sđ cung AE (3)

sđ cung DK = sđ cung ADK - sđ cung AD (4)

Từ (1) (2) (3) và (4) => sđ cung EK = sđ cung DK (*)

sđ \(\widehat{EDK}=\frac{1}{2}\) sđ cung EK và sđ \(\widehat{DEK}=\frac{1}{2}\) sđ cung DK (**)

Từ (*) và (**)  \(\Rightarrow\widehat{EDK}=\widehat{DEK}\) => tam giác KDE cân tại K (***)

Mặt khác

\(\widehat{AKE}=\widehat{ACE}\) (Góc nội tiếp cùng chắn cung AE)

\(\widehat{AKD}=\widehat{ABD}\) (Góc nội tiếp cùng chắn cung AD)

Mà \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(\Rightarrow\widehat{AKE}=\widehat{AKD}\) => AO là phân giác của \(\widehat{DKE}\) (****)

Twg (***) và (****) \(\Rightarrow AO\perp ED\) (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

24 tháng 5 2018

D O Q B C P A

Xét BEDC nội tiếp của đường tròn.

\(\widehat{EDB}=\widehat{ECB}\left(\text{cung BQ}\right)\)

Xét (O) có: \(\widehat{BPQ}=\widehat{EDB}\)

=> 2 góc này ở vị trí đồng

=> OA // DE

P/s: Ko chắc đâu

27 tháng 5 2022

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.

c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)

Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)

\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)

d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy) 

Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)

Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)

\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)

Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)

Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)

Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\) 

\(\Rightarrow\) OA đi qua trung điểm của PQ  (4)

Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ

7 tháng 6 2021

a) Ta có: \(\angle AEH+\angle ADH=90+90=180\Rightarrow AEHD\) nội tiếp (1)

Vì AK là đường kính \(\Rightarrow\angle ANK=90\)

\(\Rightarrow\angle ANH+\angle ADH=90+90=180\Rightarrow ANHD\) nội tiếp (2)

Từ (1) và (2) \(\Rightarrow A,N,E,H,D\) cùng thuộc 1 đường tròn

b) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp

\(\Rightarrow\angle ADE=\angle ABC\)

Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)

\(\Rightarrow\angle ADE+\angle OAC=90\Rightarrow AO\bot DE\)

c) DE cắt BC tại Q'.Q'A cắt (O) tại N'

Xét \(\Delta Q'EB\) và \(\Delta Q'CD:\) Ta có: \(\left\{{}\begin{matrix}\angle Q'EB=\angle Q'CD\\\angle CQ'Dchung\end{matrix}\right.\)

\(\Rightarrow\Delta Q'EB\sim\Delta Q'CD\left(g-g\right)\Rightarrow\dfrac{Q'E}{Q'C}=\dfrac{Q'B}{Q'D}\Rightarrow Q'B.Q'C=Q'D.Q'E\)

Xét \(\Delta Q'N'B\) và \(\Delta Q'CA:\) Ta có: \(\left\{{}\begin{matrix}\angle Q'N'B=\angle Q'CA\\\angle CQ'Achung\end{matrix}\right.\)

\(\Rightarrow\Delta Q'N'B\sim\Delta Q'CA\left(g-g\right)\Rightarrow\dfrac{Q'N'}{Q'C}=\dfrac{Q'B}{Q'A}\Rightarrow Q'B.Q'C=Q'N'.Q'A\)

\(\Rightarrow Q'N'.Q'A=Q'D.Q'E\Rightarrow AN'DE\) nội tiếp

mà AEHD nội tiếp \(\Rightarrow A,N',D,E,H\) cùng thuộc 1 đường tròn

\(\Rightarrow N\equiv N'\Rightarrow Q\equiv Q'\Rightarrow\)  đpcmundefined

7 tháng 6 2021

thank :33

 

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

18 tháng 2 2021

cần câu d :v

3: 

Xét ΔGMB và ΔGCA có

góc GMB=góc GCA

góc G chung

=>ΔGMB đồng dạng với ΔGCA

=>GM/GC=GB/GA

=>GM*GA=GB*GC

Xét ΔGEB và ΔGCD có

góc GEB=góc GCD

góc EGB chung

=>ΔGEB đồng dạng với ΔGCD

=>GE/GC=GB/GD

=>GE*GD=GB*GC=GM*GA

=>GE/GA=GM/GD

=>ΔGEM đồng dạng với ΔGAD

=>góc GEM=góc GAD

=>góc DEM+góc DAM=180 độ

=>ADEM nội tiếp

=>góc MDE=góc MAE

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD

Có thể giải như sau: 
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2 
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2 
Dễ tính được BC = RV3 => ED = RV3/2 
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD) 
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)

p/s:tham khảo

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiêp

b: góc ABM=góc ACN

=>sđ cung AM=sđ cung AN=2*30=60 độ

=>AM=AN

c: OM=ON

AM=AN

=>OA là trung trực của MN

=>OA vuông góc MN

d: Kẻ đường kính AD

Xét ΔACD vuông tại C và ΔAKB vuông tại K có

góc ADC=góc ABK

=>ΔACD đồng dạng với ΔAKB

=>AC/AK=AD/AB

=>AK*2*R=AB*AC