K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

a) Ta có: \(\angle AEH+\angle ADH=90+90=180\Rightarrow AEHD\) nội tiếp (1)

Vì AK là đường kính \(\Rightarrow\angle ANK=90\)

\(\Rightarrow\angle ANH+\angle ADH=90+90=180\Rightarrow ANHD\) nội tiếp (2)

Từ (1) và (2) \(\Rightarrow A,N,E,H,D\) cùng thuộc 1 đường tròn

b) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp

\(\Rightarrow\angle ADE=\angle ABC\)

Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)

\(\Rightarrow\angle ADE+\angle OAC=90\Rightarrow AO\bot DE\)

c) DE cắt BC tại Q'.Q'A cắt (O) tại N'

Xét \(\Delta Q'EB\) và \(\Delta Q'CD:\) Ta có: \(\left\{{}\begin{matrix}\angle Q'EB=\angle Q'CD\\\angle CQ'Dchung\end{matrix}\right.\)

\(\Rightarrow\Delta Q'EB\sim\Delta Q'CD\left(g-g\right)\Rightarrow\dfrac{Q'E}{Q'C}=\dfrac{Q'B}{Q'D}\Rightarrow Q'B.Q'C=Q'D.Q'E\)

Xét \(\Delta Q'N'B\) và \(\Delta Q'CA:\) Ta có: \(\left\{{}\begin{matrix}\angle Q'N'B=\angle Q'CA\\\angle CQ'Achung\end{matrix}\right.\)

\(\Rightarrow\Delta Q'N'B\sim\Delta Q'CA\left(g-g\right)\Rightarrow\dfrac{Q'N'}{Q'C}=\dfrac{Q'B}{Q'A}\Rightarrow Q'B.Q'C=Q'N'.Q'A\)

\(\Rightarrow Q'N'.Q'A=Q'D.Q'E\Rightarrow AN'DE\) nội tiếp

mà AEHD nội tiếp \(\Rightarrow A,N',D,E,H\) cùng thuộc 1 đường tròn

\(\Rightarrow N\equiv N'\Rightarrow Q\equiv Q'\Rightarrow\)  đpcmundefined

7 tháng 6 2021

thank :33

 

17 tháng 3 2023

Giải

13 tháng 5 2021
Alo blu đen sô
13 tháng 5 2021
Alo bluuu đen sô
20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi

25 tháng 3 2020

em ko biết

26 tháng 3 2020

A B C D E K H N M 2 1 2 1 1 1 F O

Xét \(\Delta ABK\)và \(\Delta C\text{D}K\)có:

\(\widehat{A_1}=\widehat{C_2}\)( 2 góc nội tiếp cùng chắn cung BD )

\(\widehat{AKB}=\widehat{CK\text{D}}\)( đối đỉnh )

\(\Rightarrow\Delta ABK~\Delta C\text{D}K\left(g-g\right)\)

\(\Rightarrow\frac{KA}{KB}=\frac{KC}{K\text{D}}\Rightarrow KA.K\text{D}=KB.KC\)

b) Kéo dài CH và BH cắt AB và AC lần lượt tại N và M

Xét \(\Delta HC\text{D}\) có:

CK vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\Delta HC\text{D}\)cân tại C

\(\Rightarrow\)CK là đường phân giác của \(\widehat{HC\text{D}}\Rightarrow\widehat{C_1}=\widehat{C_2}\)

Xét \(\Delta AMH\) và \(\Delta CKH\)có:

\(\widehat{AHM}=\widehat{CHK}\)( đối đỉnh )

\(\widehat{A_1}=\widehat{C_1}\)( cùng bằng \(\widehat{C_2}\))

\(\Rightarrow\Delta AMH~\Delta CKH\left(g-g\right)\)

\(\Rightarrow\widehat{AMH}=\widehat{CKH}=90^0\)

Hay \(CM\perp AB\)

Xét \(\Delta ABC\)có:

2 đường cao cắt nhau tại H

\(\Rightarrow\)H là trực tâm của tam giác ABC

c) Ta có: DE // BC Mà \(A\text{D}\perp BC\Rightarrow DE\perp A\text{D}\Rightarrow\widehat{FDE}=90^0\)

Xét \(\Delta AFB\)Và \(\Delta\text{E}FD\)có:

\(\widehat{F_1}=\widehat{F_2}\)( đối đỉnh )

\(\widehat{A_1}=\widehat{FED}\)( góc nội tiếp cùng chắn cung BD )

\(\Rightarrow\Delta\text{A}FB~\Delta\text{E}FD\left(g-g\right)\)

\(\Rightarrow\widehat{ABF}=\widehat{E\text{D}F}=90^0\)

Xét tam giác ABE nội tiếp đường tròn ( O, R )

có: \(\widehat{ABE}=90^0\)\(\Rightarrow\)AE là đường kính của ( O, R )

\(\Rightarrow\)A , O , E thẳng hàng

9 tháng 8 2016

cho tam giác ABC vuông cân tại B.Trên cạnh BA và BC lấy hai điểm E và F sao cho BE = BF.Qua B và E kẻ đường vuông góc với AF,chúng cắt AC lần lượt ở I và K. EK cắt BC tại H
a)Chứng minh tam giác AHC cân
b)chứng minh I là trung điểm KC
c)Gọi M,N,P lần lượt là trung điểm EC,AF,EF