K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

Xin lời giải với ạ :<<

20 tháng 12 2017

A B C O F H E D I K A' C' B' M N

a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)

KB // CF \(\Rightarrow\widehat{ABK}=90^o\)

Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).

b) Do BHCK là hình bình hành nên I là trung điểm HK.

AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K

Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'

Tương tự : HF = FC' ; HE = EB'

Ta có :  \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)

\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)

\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)

\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)

Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)

c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)

Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\)  (1)

AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.

Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)

Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)

Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\)   (2)

Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)

20 tháng 12 2017

ghê quá cô ơi

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

14 tháng 1 2019

A B C N D F I K O

a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I

=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)

Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)

+) ND cùng vuông góc với IK và BC 

=> IK//BC

=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)

Từ (1), (2), (3)

=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)

+) Xét 2 tam giác vuông INO và ODB có:

\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)

=> \(\Delta INO~\Delta ODB\)

=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)

Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)

(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)

b) IK//BC. Theo định lí Thaslet ta có:

\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)

(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)

25 tháng 11 2015

bọn tớ chưa học đến phần này