Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét tứ giác CDHE có:
\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)
Do đó: tứ giác CDHE là tứ giác nội tiếp.
b. Gọi I là trung điểm của HC
=> I là tâm đường tròn ngoại tiếp tam giác DEC
Có: EM là trung tuyến tam giác vuông BEA
=> \(\widehat{MEB}=\widehat{MBE}\)
EI là trung tuyến tam giác vuông HEC
=> \(\widehat{IEH}=\widehat{IHE}\)
Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )
=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)
=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.
c. Xét tam giác vuông BDH và tam giác vuông ADC có:
\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )
=> \(\Delta BDH\sim\Delta ADC\)
=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)
<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)
\(DH.DA\) max \(=\dfrac{3R^2}{4}\) khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.
☕T.Lam
1, Xét tứ giác CDHE , có :
\(AD⊥BC,BE⊥AC\)→\(\widehat{HDC}+\widehat{HEC}=90^0+90^0=180^0\)
=> Tứ giác CDHE nội tiếp được 1 đường tròn
2, Ta có :
\(\widehat{AFE}=\widehat{AFB}=\widehat{ACB}=90^o−\widehat{DAC}=\widehat{AHE}\)
=> \(\bigtriangleup{HAF}\) cân
3, Ta có :
\(\widehat{ABE}=\widehat{ACH}(=\widehat{BAE}=90^o)\)
=> \( Δ A B E ∼ Δ H C E ( g . g )\)
Mà M, I là trung điểm AB, HC
=> \( Δ M E B ∼ Δ I E C\)
=> \(\widehat{MEB}= \widehat{IEC}→ME⊥EI\) →ME là tiếp tuyến của (CDE)
4, Ta có :
\(BC=R√ 3→ \widehat {BOC}=120^o→ \widehat{BAC}=60^o \)
Ta có : \(\widehat{BHD}= \widehat{ACD}→ΔBDH∼ΔADC(g.g)\)
\(→\dfrac{DH}{DC}=\dfrac{BD}{AD}→DH.DA=BD.DC≤\dfrac{1}{4}(BD+DC)^2=\dfrac{3}{4}R^2\)
Dấu "=" xảy ra khi \(DB=DC→ΔABC \) đều
1.Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.
CF là đường cao => CF ┴ AB => góc BFC = 900.
Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.
3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung
=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung
=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.
4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)
góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)
=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C
=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.
5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn
=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)
Cũng theo chứng minh trên CEHD là tứ giác nội tiếp
góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)
góc E1 = góc E2 => EB là tia phân giác của góc FED.
Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).
Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)
Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3
Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.
Vậy DE là tiếp tuyến của đường tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm
1: góc BFC=góc BEC=90 độ
=>BFEC nộitiếp
Tâm là trung điểm của BC
2: góc EFC=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFC=góc DFC
=>FC là phân giác của góc EFD
BFEC nội tiếp
=>góc AFE=góc ACB
mà góc A chung
nên ΔAFE đồng dạng với ΔACB
=>AF/AC=AE/AB
=>AF*AB=AC*AE
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn
Tham khảo :
https://hoc24.vn/hoi-dap/question/988730.html