Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ΔABC vuông tại A
=>A,B,C cùng thuộc đường tròn đường kính BC
=>O là trung điểm của BC
ΔOAC cân tại O
mà OD là đường trung tuyến
nên OD vuông góc AC
Xét tứ giác AHOD có góc AHO+góc ADO=180 độ
nên AHOD nội tiếp đường tròn đường kính AO
2: I nằm giữa O và A
=>OI+IA=OA
=>OI=OA-IA=R-r
=>(I) tiếp xúc (O) tại A
3: Xét (I) có
ΔAEO nội tiếp
AO là đường kính
Do đó: ΔAEO vuông tại E
Xét tứ giác AEOD có
góc AEO=góc ADO=góc EAD=90 độ
=>AEOD là hình chữ nhật
=>AO cắt ED tại trung điểm của mỗi đường
=>E,I,D thẳng hàng
a: Xét (D) có
ΔBFC nội tiếp
BC là đường kính
Do đó;ΔBFC vuông tại F
=>CF\(\perp\)FB tại F
=>CF\(\perp\)AB tại F
Xét (D) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)CE tại E
=>BE\(\perp\)AC tại E
Xét tứ giác AFHE có
\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
=>AEHF là tứ giác nội tiếp đường tròn đường kính AH
=>A,E,H,F cùng thuộc đường tròn (O), với O là trung điểm của AH
b: Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm
=>AH\(\perp\)BC
ΔABC cân tại A
mà AD là đường trung tuyến
nên AD\(\perp\)BC tại D
mà AH\(\perp\)BC và AH,AD có điểm chung là A
nên A,H,D thẳng hàng
=>O,H,D thẳng hàng
OH=OE
=>ΔOHE cân tại O
=>\(\widehat{OEH}=\widehat{OHE}\)
mà \(\widehat{BHD}=\widehat{OHE}\)(hai góc đối đỉnh)
và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{HBD}\right)\)
nên \(\widehat{OEH}=\widehat{BCE}\)
DB=DE
=>ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
\(\widehat{OED}=\widehat{OEH}+\widehat{DEH}\)
\(=\widehat{BCE}+\widehat{EBC}=90^0\)
=>DE là tiếp tuyến của (O)
4:
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: XétΔKBD và ΔKAB có
góc KBD=góc KAB
góc K chung
=>ΔKBD đồng dạng vớiΔKAB
a: Vì góc AKB=góc AHB=90 độ
=>AKHB nội tiếp
b: góc FBC=góc HAC=góc EBC
=>BH là phân giác của góc EBI
còn song song dou ạ vẽ cho e cái hình dc hong e ngu toán í:(