K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

a: Xét (D) có

ΔBFC nội tiếp

BC là đường kính

Do đó;ΔBFC vuông tại F

=>CF\(\perp\)FB tại F

=>CF\(\perp\)AB tại F

Xét (D) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)CE tại E

=>BE\(\perp\)AC tại E

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,F cùng thuộc đường tròn (O), với O là trung điểm của AH

b: Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH\(\perp\)BC

ΔABC cân tại A

mà AD là đường trung tuyến

nên AD\(\perp\)BC tại D

mà AH\(\perp\)BC và AH,AD có điểm chung là A

nên A,H,D thẳng hàng

=>O,H,D thẳng hàng

OH=OE

=>ΔOHE cân tại O

=>\(\widehat{OEH}=\widehat{OHE}\)

mà \(\widehat{BHD}=\widehat{OHE}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{HBD}\right)\)

nên \(\widehat{OEH}=\widehat{BCE}\)

DB=DE

=>ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

\(\widehat{OED}=\widehat{OEH}+\widehat{DEH}\)

\(=\widehat{BCE}+\widehat{EBC}=90^0\)

=>DE là tiếp tuyến của (O)