K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

a: Xét (D) có

ΔBFC nội tiếp

BC là đường kính

Do đó;ΔBFC vuông tại F

=>CF\(\perp\)FB tại F

=>CF\(\perp\)AB tại F

Xét (D) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)CE tại E

=>BE\(\perp\)AC tại E

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,F cùng thuộc đường tròn (O), với O là trung điểm của AH

b: Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH\(\perp\)BC

ΔABC cân tại A

mà AD là đường trung tuyến

nên AD\(\perp\)BC tại D

mà AH\(\perp\)BC và AH,AD có điểm chung là A

nên A,H,D thẳng hàng

=>O,H,D thẳng hàng

OH=OE

=>ΔOHE cân tại O

=>\(\widehat{OEH}=\widehat{OHE}\)

mà \(\widehat{BHD}=\widehat{OHE}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{HBD}\right)\)

nên \(\widehat{OEH}=\widehat{BCE}\)

DB=DE

=>ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

\(\widehat{OED}=\widehat{OEH}+\widehat{DEH}\)

\(=\widehat{BCE}+\widehat{EBC}=90^0\)

=>DE là tiếp tuyến của (O)

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>CF\(\perp\)FB tại F

=>CF\(\perp\)AB tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC(1)

ΔABC cân tại A

mà AD là đường trung tuyến

nên AD\(\perp\)BC(2)

Từ (1),(2) suy ra A,H,D thẳng hàng

hay AD\(\perp\)BC tại D

Gọi I là trung điểm của AH

=>I là tâm của đường tròn đường kính AH

Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,F cùng thuộc đường tròn tâm I, đường kính AH

b: IE=IH

=>ΔIEH cân tại I

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)

nên \(\widehat{IEH}=\widehat{BCE}\)

ΔEBC vuông tại E

mà ED là đường trung tuyến

nên DB=DE

=>ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

\(\widehat{IED}=\widehat{IEB}+\widehat{DEB}\)

\(=\widehat{IEH}+\widehat{DEB}\)

\(=\widehat{EBC}+\widehat{ECB}=90^0\)

=>DE là tiếp tuyến của (I)

1 tháng 12 2023

a, xét tam giác BFC có 

BC là đường kính của(O)

=>tam giác BFC vuông tại F=>góc BFC=90(độ)

xét tam giác CEB có 

BC là đường kính của (O)

=>tam giác CEB vuống tại E=>CEB=90(độ)

=> tứ giác BCEF nội tiếp đường tròn đường kính BC có tâm (D)

=> 4 điểm B,C,E,F cùng thuộc 1 đường tròn

 

20 tháng 5 2019

A B C D E F H O

a) Ta có \(\widehat{BEC},\widehat{BFC}\) là 2 góc nội tiếp chắn nửa đường tròn\(\Rightarrow\widehat{BEC}=\widehat{BFC}=90^0\Rightarrow\widehat{HFA}=\widehat{AEH}=90^0\)

Xét tứ giác AEHF có \(\widehat{HFA}+\widehat{AEH}=90^0+90^0=180^0\)

Suy ra tứ giác AEHF nội tiếp hay 4 điểm A,E,H,F cùng thuộc đường tròn tâm O

b) Ta có \(\widehat{BEC}=\widehat{BFC}=90^0\) Suy ra tứ giác BFEC nội tiếp \(\Rightarrow\widehat{AEF}=\widehat{ABC}\)

\(\widehat{AFE}=\widehat{AEF}\)

Suy ra \(\widehat{AFE}=\widehat{ABC}\)\(\Rightarrow\widehat{AHE}=\widehat{ACB}\Rightarrow\widehat{HAE}=\widehat{EBD}=\widehat{DEB}\)

Suy ra DE là tiếp tuyến của (O)

23 tháng 7 2018

I don't now

...............

.................

.

a: Vì góc AKB=góc AHB=90 độ

=>AKHB nội tiếp

b: góc FBC=góc HAC=góc EBC

=>BH là phân giác của góc EBI

9 tháng 3 2023

còn song song dou ạ vẽ cho e cái hình dc hong e ngu toán í:(

28 tháng 11 2023

Xét (O) có

CA,CM là tiếp tuyến

Do đó: OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

=>ΔDOC vuông tại O

Gọi N là trung điểm của CD

ΔOCD vuông tại O

=>ΔOCD nội tiếp đường tròn đường kính CD

mà N là trung điểm của CD

nên ΔOCD nội tiếp (N)

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB tại O

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó:AB là tiếp tuyến của (N)

=>Đường tròn đường kính CD tiếp xúc với AB

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét tứ giác AKEH có \(\widehat{EHA}+\widehat{EKA}=90^0+90^0=180^0\)

nên AKEH là tứ giác nội tiếp

=>A,K,E,H cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{KAI}\) là góc nội tiếp chắn cung KI

\(\widehat{KBI}\) là góc nội tiếp chắn cung KI

Do đó: \(\widehat{KAI}=\widehat{KBI}\)

=>\(\widehat{KAE}=\widehat{KBC}\)

c: Xét (O) có

ΔAIB nội tiếp

AB là đường kính

Do đó: ΔAIB vuông tại I

Xét ΔAHE vuông tại H và ΔAIB vuông tại I có

\(\widehat{HAE}\) chung

Do đó: ΔAHE đồng dạng với ΔAIB

=>\(\dfrac{AH}{AI}=\dfrac{AE}{AB}\)

=>\(AE\cdot AI=AB\cdot AH\)

Xét ΔBHE vuông tại H và ΔBKA vuông tại K có

góc HBE chung

Do đó: ΔBHE đồng dạng với ΔBKA

=>\(\dfrac{BH}{BK}=\dfrac{BE}{BA}\)

=>\(BH\cdot BA=BE\cdot BK\)

\(AE\cdot AI+BE\cdot BK\)

\(=AH\cdot AB+BH\cdot AB\)

\(=AB^2=4R^2\)

 

1: ΔABC vuông tại A

=>A,B,C cùng thuộc đường tròn đường kính BC

=>O là trung điểm của BC

ΔOAC cân tại O

mà OD là đường trung tuyến

nên OD vuông góc AC

Xét tứ giác AHOD có góc AHO+góc ADO=180 độ

nên AHOD nội tiếp đường tròn đường kính AO

2: I nằm giữa O và A

=>OI+IA=OA

=>OI=OA-IA=R-r

=>(I) tiếp xúc (O) tại A

3: Xét (I) có

ΔAEO nội tiếp

AO là đường kính

Do đó: ΔAEO vuông tại E

Xét tứ giác AEOD có

góc AEO=góc ADO=góc EAD=90 độ

=>AEOD là hình chữ nhật

=>AO cắt ED tại trung điểm của mỗi đường

=>E,I,D thẳng hàng