K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,Có BC^2=5^2=25 
AB^2+AC^2=3^2+4^2=25 
suy ra BC^2=AB^2+AC^2 
Theo ĐL Pitago đảo thì tam giác ABC vuông tại A. 

15 tháng 4 2019

A B C M N K D H

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn
13 tháng 12 2017

Lời giải:

a,Vì M là trung điểm AC nên MA=MC

MB=MD (gt)=>M là trung điểm của BD

Góc AMB=góc DMC (đối đỉnh)

=> tam giác ABM=tam giác CDM(c.g.c) (1)

b,vì tam giác ABC nhọn(gt)

=>góc B ,góc C nhọn

M là trung điểm của AC và BD

=>M là giao điểm 2 đường thẳng AC và BD

Từ. (1)  => góc ABM=góc CDM (so le)

Góc MCD= góc BAM (so le)

Cạnh AB=CD

=>Tứ giác ABCD là hình bình hành

=>AB//CD

c,vì  H và K là 2 điểm thuộc BD

mà BH =DK (gt)

Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD

=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)

=>AH//CK

=>góc AKH=góc CHK(2 góc ở vị trí so le)

=> tam giác AHK=tam giác CKH(c.g.c)

=>AK=CH

31 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔAMB=ΔCMD

b: ta có: ΔAMB=ΔCMD

=>\(\widehat{MAB}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIBM và ΔKDM có

IB=KD

\(\widehat{IBM}=\widehat{KDM}\)(hai góc so le trong, AB//CD)

BM=MD

Do đó: ΔIBM=ΔKDM

=>\(\widehat{IMB}=\widehat{KMD}\)

mà \(\widehat{IMB}+\widehat{IMD}=180^0\)(hai góc kề bù)

nên \(\widehat{KMD}+\widehat{IMD}=180^0\)

=>I,M,K thẳng hàng