K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Câu hỏi của Lê Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo.

31 tháng 12 2019

A B C E F O

Ta có: ^ABE = ^ACF ( cùng phụ ^BAC )

=> ^FBO = ^FCA 

Xét \(\Delta\)FBO  vuông tại F và \(\Delta\)FCA  vuông tại F có:

BO = AC ( gt ) ; ^FBO = ^FCA ( chứng minh trên )

=>\(\Delta\) FBO = \(\Delta\)FCA 

=> FB = FC 

=> \(\Delta\)BFC cân tại F mà FB vuông FC

=> \(\Delta\)BFC vuông tân tại F 

=> ^FBC = 45 \(^o\)=> ^ABC  = 45\(^o\).

28 tháng 4 2017

B A C E F O

a/ Giải thích thêm: Vì AB = AC (tam giác ABC cân tại A. Mà E là trung điểm AC;F là trung điểm AB => AF = BF = AE = EC)

Xét tam giác BAE và tam giác CAF có:

    \(\hept{\begin{cases}\widehat{BAC}:chung\\AB=AC\left(gt\right)\\AE=AF\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta BAE=\Delta CAF\left(c.g.c\right)\)

\(\Rightarrow BE=CF\)

b/ Xét tam giác ABC có 2 đường trung tuyến BE;CF cắt nhau tại O

=> O là trọng tâm tam giác ABC

=> AO là đường trung tuyến thứ 3

=> AO đi qua trung điểm H của BC (Bạn bổ sung điểm H cho mình nhá - Cho dễ làm thôi)

Mà tam giác ABC cân tại A => AO vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow AO⊥BC\)tại H

c/ Vì H là trung điểm BC => HB = HC = BC:2 = 10 : 2 = 5 (cm)

 Xét tam giác ABH vuông tại H có:

\(AH^2+BH^2=AB^2\left(pytago\right)\)

\(AH^2+5^2=13^2\)

\(\Rightarrow AH^2=13^2-5^2=169-25=144\)

\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)

Vì O là trọng tâm của tam giác ABC => \(OH=\frac{1}{3}AH\Rightarrow OH=\frac{1}{3}.12=4\left(cm\right)\)

Xét tam giác BOH vuông tại H có:

\(BH^2+OH^2=BO^2\left(pytago\right)\)

\(5^2+4^2=BO^2\)

\(25+16=BO^2\)

\(41=BO^2\)

\(\Rightarrow BO=\sqrt{41}\approx6,4\left(cm\right)\)

27 tháng 7 2015

A B C F H E 1 1 O

Có góc A1 = B(Vì cùng phụ với góc BAC)

Xét tam giác vuông AEB và OEC có: góc A1 = B1; cạnh huyền AB = OC

=> tam giác AEB = OEC (cạnh huyền - góc nhọn)

=> AE = OE => tam giác OAE vuông tại E => góc OAE = 45o

Mà tam giác AHC vuông tại H => góc ABH = 90o - OAE = 90- 45o = 45o

Vậy góc ACB = 45o

7 tháng 1 2017

Dễ thế nên ko cần làm thằng kia nó sai đấy

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
8 tháng 1 2020

A B C E F O

GT

 △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm

 BF và BC tỉ lệ 3 và 5

 BE ∩ CF = {O} . Nối AO với EF

KL

 a, △ABC cân

 b, BC = ?

 c, AO là trung trực EF

Bài làm:

a, Xét △BFC vuông tại F và △CEB vuông tại E

Có: BC là cạnh chung

      CF = BE (gt)

=> △BFC = △CEB (ch-cgv)

=> FBC = ECB (2 góc tương ứng)

Xét △ABC có: ABC = ACB (cmt)

=> △ABC cân tại A

b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)

Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)

Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)

\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)

\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)

\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)

c, Vì △ABC cân tại A => AB = AC

Ta có: AB = AF + FB

          BC = AE + EC

Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)

=> AF = AE

=> A thuộc đường trung trực của FE   (1)

Ta có: DBC = FBE + EBC 

          ECB = ECF + FCB

Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)

=> FBE = ECF

Xét △BFO vuông tại F và △CEO vuông tại E

Có: FBO = ECO (cmt) 

     BF = CE (△BFC = △CEB)

=> △BFO = △CEO (cgv-gnk)

=> FO = OE (2 cạnh tương ứng)

=> O thuộc đường trung trực của FE   (2)

Từ (1) và (2) => đường thẳng AO là trung trực của EF.

8 tháng 1 2020

thank bạn

a: Xét ΔABC có

BE,CF là đừog cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

b: Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng

Xét ΔBIH và ΔCIM có

IB=IC

IH=IM

BH=CM

=>ΔBIH=ΔCIM

18 tháng 3 2020

Câu hỏi này mà là linh tinh hả bạn( è)

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\)  => ABE=ACF

 => 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

=>AG=HA (hai góc tương ứng )  => Tam giác AGH cân tại A (1)

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  (2)  Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)

b) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)

 

8 tháng 1 2019

ai đó giải hộ mik bài này

4 tháng 2 2019


a, từ đề bài có:

BE⊥ACCF⊥ABBE⊥AC CF⊥AB

⇒ΔBFC vuông tại FΔCEB vuông tại E⇒ΔBFC vuông tại FΔCEB vuông tại E

Xét ΔBFCΔBFC:

BF3=BC5=k⇒BF=3k,BC=5kBF3=BC5=k⇒BF=3k,BC=5k

Theo định lý Py-ta-go ta có:

(3k)2+82=(5k)29k2+64=25k264=16k2k2=4k=2BF=3k=3⋅2=6BC=5k=5⋅2=10(3k)2+82=(5k)29k2+64=25k264=16k2k2=4k=2BF=3k=3⋅2=6BC=5k=5⋅2=10

Xét ΔCEBΔCEB:

Theo định lý Py-ta-go đảo ta có:

CE2+BE2=CB2CE2+82=102CE2+64=100CE2=36CE=6CE2+BE2=CB2CE2+82=102CE2+64=100CE2=36CE=6

Xét ΔBFC và ΔCEBΔBFC và ΔCEB có:

CE=BF(=6)BE=CF(gt)Cạnh chung BC⇒ΔBFC và ΔCEB(c.c.c)⇒FBCˆ=ECBˆ(góc tương ứng)CE=BF(=6)BE=CF(gt)Cạnh chung BC⇒ΔBFC và ΔCEB(c.c.c)⇒FBC^=ECB^(góc tương ứng)

Xét ΔABCΔABC:

ABCˆ=FBCˆ=ECBˆ=ACBˆ⇒ABCˆ=ACBˆABC^=FBC^=ECB^=ACB^⇒ABC^=ACB^

ΔABCΔABC có hai góc ở đáy bằng nhau

⇒ΔABC⇒ΔABC là tam giác cân

b) BC=10(cmt)