Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: AH⊥BC
hay AF⊥BC
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: AH vuông góc với BC tại D
b:
Xét tứ giác CDFA có góc CDA=góc CFA=90 độ
nên CDFA là tứ giác nội tiếp
=>góc BFD=góc BCA
Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
=>góc AFE=góc ACB
Ta có: góc COE=180 độ-2 góc C
góc EFD=180 độ-góc AFE-góc BFD
=180 độ-2 góc C
=>góc COE=góc EFD
=>DOEF là tứ giác nội tiếp
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
b/
BC=6 => Bán kính (O) là R=3cm
Ta có
sđ \(\widehat{NBC}=30^o=\dfrac{1}{2}\) sđ cung NC (Góc nội tiếp đường tròn)
=>sđ cung NC = 2.sđ \(\widehat{NBC}=60^o\)
\(\Rightarrow l_{NC}=\dfrac{\Pi.R.n}{180}=\dfrac{\Pi.3.60^o}{180^o}=\Pi\simeq3,14cm\)
\(S=\dfrac{\Pi.R^2.n}{360^o}=\dfrac{\Pi.9.60^o}{360^o}=\dfrac{9.\Pi}{4}cm^2\)
c/ Ta có
\(\widehat{BNC}=\widehat{BMC}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{ANB}=\widehat{AMC}=90^o\)
=> \(BN\perp AC;CM\perp AB\Rightarrow AH\perp BC\) tại K (trong tg ABC 3 đường cao đồng quy tại trực tâm H)
Xét tg vuông AKC và tg vuông BNC có
\(\widehat{HAN}=\widehat{NBC}\) (cùng phụ với \(\widehat{ACB}\) )
d/
Xét tứ giác BMHK có M và K cùng nhìn BH dưới 1 góc 90 độ => BMHK là tứ giác nội tiếp
\(\Rightarrow\widehat{NBC}=\widehat{HMK}\) (góc nội tiếp cùng chắn cung HK)
Xét tứ giác nội tiếp (O) BMNC có
\(\widehat{NBC}=\widehat{HMN}\) (góc nội tiếp cùng chắn cung NC)
\(\Rightarrow\widehat{HMK}=\widehat{HMN}\) => MH là phân giác \(\widehat{KMN}\)
C/m tương tự ta cũng có NH là phân giác của \(KNM\)
=> KI là phân giác của \(\widehat{MKN}\) (trong tg 3 đường phân giác đồng quy)
Xét tg KMN có
\(\dfrac{IM}{MK}=\dfrac{IN}{NK}\) (T/c đường phân giác: Trong một tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với 2 cạnh kề với hai đoạn thẳng đó) (đpcm)