K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

Áp dụng HTL tam giác AMC vuông tại M và ANB vuông tại N có 

\(\left\{{}\begin{matrix}AM^2=AD\cdot AC\left(1\right)\\AN^2=AE\cdot AB\left(2\right)\end{matrix}\right.\)

Vì \(\left\{{}\begin{matrix}\widehat{AEC}=\widehat{ADB}=90^0\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEC\sim\Delta ADB\left(g.g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

\(\Rightarrow AE\cdot AB=AC\cdot AD\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow AM^2=AN^2\Rightarrow AM=AN\\ \RightarrowĐpcm\)

13 tháng 7 2021

tam giác AMC vuông tại M có MD là đường cao \(\Rightarrow AM^2=AD.AC\left(1\right)\)

tam giác ANB vuông tại N có NE là đường cao \(\Rightarrow AN^2=AE.AB\left(2\right)\)

Xét \(\Delta AEC\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AEC=\angle ADB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AEC\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AC.AD\left(3\right)\)

Từ (1),(2),(3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A

18 tháng 7 2022

ủa \(\widehat{AMB}=\widehat{ANC}\)  rồi thì △AMN cân rồi cần gì phải đi c/m

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{DAB}\) chung

Do đó: ΔADB∼ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

\(\Leftrightarrow AD\cdot AC=AE\cdot AB\)

\(\Leftrightarrow AM^2=AN^2\)

=>AM=AN

hay ΔAMN cân tại A

1 tháng 8 2015

Trong t/g vuông ANB có NE là đường cao: AN^2 = AE.AB

Trong t/g vuông AMC có MD là đường cao: AM^2 = AD.AC

Mà t/g ABD ~ t/g ACE (g.g) nên AB/AC = AD/AE <=> AB.AE = AC.AD

=> AN^2 = AM^2 <=> AN = AM

23 tháng 3 2016

mình làm được câu a, b, c rồi các bạn giúp mình câu d nhé thank

17 tháng 11 2023

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

\(\widehat{BAD}\) chung

Do đó: ΔABD đồng dạng với ΔACE

=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)

=>\(AB\cdot AE=AD\cdot AC\)(3)

b: Sửa đề: Gọi P là trung điểm của MN.Chứng minh AP vuông góc MN

Xét ΔAMC vuông tại M có MD là đường cao

nên \(AD\cdot AC=AM^2\left(1\right)\)

Xét ΔANB vuông tại N có NE là đường cao

nên \(AE\cdot AB=AN^2\left(2\right)\)

Từ (1) và (2) và (3) suy ra AM=AN

ΔAMN cân tại A

mà AP là đường trung tuyến

nên AP\(\perp\)MN