Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHE có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AB là phân giác của góc HAE và AE=AH
Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHF cân tại A
=>AC là phân giác của góc HAF và AH=AF
=>AE=AF
Xét ΔAHM và ΔAEM có
AH=AE
góc HAM=góc EAM
AM chung
=>ΔAHM=ΔAEM
=>góc AHM=góc AEM
Xét ΔAHN và ΔAFN có
AH=AF
góc HAN=góc FAN
AN chung
=>ΔAHN=ΔAFN
=>góc AHN=góc AFN
=>góc AHN=góc AHM
=>HA là phân giác của góc MHN
b: Xét ΔHEF có HI/HE=HK/HF
nên IK//EF
=>IK//MN
a) Xét ΔAIH vuông tại I và ΔAID vuông tại I có
AI chung
IH=ID(gt)
Do đó: ΔAIH=ΔAID(hai cạnh góc vuông)
Suy ra: \(\widehat{IAH}=\widehat{IAD}\)(hai góc tương ứng)
Xét ΔAHK vuông tại K và ΔAEK vuông tại K có
AK chung
HK=EK(gt)
Do đó: ΔAHK=ΔAEK(hai cạnh góc vuông)
Suy ra: \(\widehat{HAK}=\widehat{EAK}\)(hai góc tương ứng)
Ta có: \(\widehat{DAE}=\widehat{DAI}+\widehat{IAH}+\widehat{HAK}+\widehat{EAK}\)
\(=2\cdot\widehat{BAH}+2\cdot\widehat{CAH}\)
\(=2\cdot\widehat{BAC}\)(đpcm)
a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có
HA=HK
HB=HI
=>ΔABH=ΔKIH
b: ΔABH=ΔKIH
=>góc ABH=góc KIH
=>AB//IK
c: IK//AB
AB vuông góc AC
=>IK vuông góc AC
=>I,K,E thẳng hàng
d: Xét tứ giác ABKI có
H là trung điểm chung của AK và BI
AK vuông góc BI
=>ABKI là hình thoi
=>AB=AI=IK
=>IK=ID
=>góc IKD=góc IDK
https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!
a: Xét ΔAIE vuông tại I và ΔAIH vuông tại I có
AH chung
IE=IH
Do đó: ΔAIE=ΔAIH
b: Xét ΔAHF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHF cân tại A
=>AH=AF
Ta có: ΔAEI=ΔAHI
=>AE=AH và \(\widehat{EAI}=\widehat{HAI}\)
Ta có: AE=AH
AH=AF
Do đó: AE=AF
c: Ta có: \(\widehat{EAI}=\widehat{HAI}\)
mà AI nằm giữa AE,AH
nên AI là phân giác của góc EAH
=>\(\widehat{EAH}=2\cdot\widehat{IAH}\)
Ta có; ΔAHF cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAF
=>\(\widehat{HAF}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{EAF}=\widehat{EAH}+\widehat{FAH}\)
\(=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(=2\cdot\widehat{BAC}=2\cdot45^0=90^0\)
a: Xét ΔAEH có
AB vừa là đường cao, vừa là trung tuyến
=>ΔAEH cân tại A
=>AE=AH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AH=AF=AE