K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEH có

AB vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

=>AE=AH

b: Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAHF cân tại A

=>AH=AF=AE

a: Xét ΔAHE có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AB là phân giác của góc HAE và AE=AH

Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHF cân tại A

=>AC là phân giác của góc HAF và AH=AF

=>AE=AF

Xét ΔAHM và ΔAEM có

AH=AE
góc HAM=góc EAM

AM chung

=>ΔAHM=ΔAEM

=>góc AHM=góc AEM

Xét ΔAHN và ΔAFN có

AH=AF

góc HAN=góc FAN

AN chung

=>ΔAHN=ΔAFN

=>góc AHN=góc AFN

=>góc AHN=góc AHM

=>HA là phân giác của góc MHN

b: Xét ΔHEF có HI/HE=HK/HF

nên IK//EF

=>IK//MN

16 tháng 3 2021

câu c có vẻ sai thông cảm

a) Xét ΔAIH vuông tại I và ΔAID vuông tại I có

AI chung

IH=ID(gt)

Do đó: ΔAIH=ΔAID(hai cạnh góc vuông)

Suy ra: \(\widehat{IAH}=\widehat{IAD}\)(hai góc tương ứng)

Xét ΔAHK vuông tại K và ΔAEK vuông tại K có 

AK chung

HK=EK(gt)

Do đó: ΔAHK=ΔAEK(hai cạnh góc vuông)

Suy ra: \(\widehat{HAK}=\widehat{EAK}\)(hai góc tương ứng)

Ta có: \(\widehat{DAE}=\widehat{DAI}+\widehat{IAH}+\widehat{HAK}+\widehat{EAK}\)

\(=2\cdot\widehat{BAH}+2\cdot\widehat{CAH}\)

\(=2\cdot\widehat{BAC}\)(đpcm)

a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có

HA=HK

HB=HI

=>ΔABH=ΔKIH

b: ΔABH=ΔKIH

=>góc ABH=góc KIH

=>AB//IK

c: IK//AB

AB vuông góc AC

=>IK vuông góc AC

=>I,K,E thẳng hàng

d: Xét tứ giác ABKI có

H là trung điểm chung của AK và BI

AK vuông góc BI

=>ABKI là hình thoi

=>AB=AI=IK

=>IK=ID

=>góc IKD=góc IDK

2 tháng 2 2020

https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!

11 tháng 12 2023

a: Xét ΔAIE vuông tại I và ΔAIH vuông tại I có

AH chung

IE=IH

Do đó: ΔAIE=ΔAIH

b: Xét ΔAHF có

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHF cân tại A

=>AH=AF

Ta có: ΔAEI=ΔAHI

=>AE=AH và \(\widehat{EAI}=\widehat{HAI}\)

Ta có: AE=AH

AH=AF

Do đó: AE=AF

c: Ta có: \(\widehat{EAI}=\widehat{HAI}\)

mà AI nằm giữa AE,AH

nên AI là phân giác của góc EAH

=>\(\widehat{EAH}=2\cdot\widehat{IAH}\)

Ta có; ΔAHF cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAF

=>\(\widehat{HAF}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{EAF}=\widehat{EAH}+\widehat{FAH}\)

\(=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

\(=2\cdot\widehat{BAC}=2\cdot45^0=90^0\)