Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a, \(\Delta AHF\&\Delta CHD\)Có:
\(\widehat{AHF}=\widehat{CHD}\left(đv\right),\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g.g\right)\)
\(\Rightarrow\frac{HA}{HC}=\frac{HF}{HD}\Rightarrow HA.HD=HC.HF\)
b, Sửa N thành B
\(\Delta BAD\&\Delta BCF\)Có:
\(\widehat{B}chung,\widehat{D}=\widehat{F}=90^o\)
\(\Rightarrow\Delta BAD\infty\Delta BCF\left(g.g\right)\)
\(\Rightarrow\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow BF.BA=BD.BC\)
c,Vì \(\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow\frac{BD}{BA}=\frac{BF}{BC}\)
\(\Delta BFD\&\Delta BCA\)Có:
\(\widehat{B}chung,\frac{BF}{BC}=\frac{BD}{BA}\)
\(\Rightarrow\)\(\Delta BFD\infty\Delta BCA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{BCA}\)
d, chưa nghĩ ra
Câu hỏi của Ngọc Duyên DJ - Toán lớp 8 - Học toán với OnlineMath
câu trả lời đã được đăng cách đây 2 ngày nhé
Hình bạn tự vẽ nha
a, Xét \(\Delta AHF\) và \(\Delta CHD\) có
\(\widehat{HFA}\)=\(\widehat{HDC}\)=\(90^o\)
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\Delta AHF\infty\Delta CHD\)( g-g)
\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow AH\cdot HD=CH\cdot HF\)
`a,` CM `AE.AC=AF.AB`
Xét \(\Delta ABE\) và \(\Delta AFC\) ta có :
\(\left\{{}\begin{matrix}\widehat{A}:chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)
Do đó \(\Delta ABE\sim\Delta AFC\left(g.g\right)\)
`=> (AE)/(AF)=(AB)/(AC)`
`<=>AE .AC = AF .AB->đpcm`
`b,` Xét \(\Delta AEF\) và \(\Delta ABC\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
`c,` Xét \(\Delta BFC\) và \(\Delta BDA\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFC}=\widehat{BDA}=90^o\end{matrix}\right.\)
Do đó \(\Delta BFC\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{BF}{BD}=\dfrac{BC}{BA}\Rightarrow\dfrac{BF}{BC}=\dfrac{BD}{BA}\)
Xét \(\Delta BHD\) và \(\Delta BCA\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta BFD\sim\Delta BCA\left(c.g.c\right)\)
`d,` Xét \(\Delta CDH\) và \(\Delta CFB\) có :
\(\left\{{}\begin{matrix}\widehat{C}:chung\\\widehat{CDH}=\widehat{CFB}=90^o\end{matrix}\right.\)
Do đó \(\Delta CDH\sim\Delta CFB\left(g.g\right)\)
\(\Rightarrow\dfrac{CF}{CD}=\dfrac{CB}{CH}\)
\(\Rightarrow\dfrac{CF}{CB}=\dfrac{CD}{CH}\)
`e,` vì \(\Delta AEF\sim\Delta ABC\) ( cm câu `b` ) nên
\(\widehat{F_2}=\widehat{C}\) ( hai góc tương ứng )
Mà \(\widehat{F_2}=\widehat{F_1}\) ( đối đỉnh )
Nên \(\widehat{C}=\widehat{F_1}\)
Xét \(\Delta IFB\) và \(\Delta IEC\) có :
\(\left\{{}\begin{matrix}\widehat{I}:chung\\\widehat{F_1}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta IFB\sim\Delta ICE\left(g.g\right)\)
\(\Rightarrow\dfrac{IF}{IC}=\dfrac{IB}{IE}\)
Vậy `IF.IE=IB.IC->đpcm`
Cậu tự vẽ hình ra đc ko ạ
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔBKA vuông tại K và ΔBFC vuông tại F có
\(\widehat{FBC}\) chung
Do đó: ΔBKA\(\sim\)ΔBFC
Suy ra: BK/BF=BA/BC
hay \(BK\cdot BC=BF\cdot BA\)
b: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
\(\widehat{KBF}\) chung
Do đó: ΔBKF\(\sim\)ΔBAC
hình bạn tự vẽ nha
a, Xét \(\Delta AHF\)và \(\Delta CHD\)có
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g\cdot g\right)\)\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow HA\cdot HD=HC\cdot HF\)
Ý b hình như bạn chép thiếu