Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M N D 1 2 1 2
Cm: a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
AH : chung
BH = CH (gt)
=> t/giác ABH = t/giác ACH (c.c.c)
Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{H_1}=\widehat{H_2}\) (2 góc t/ứng)
Mà \(\widehat{H_1}+\widehat{H_2}=180^0\) (kề bù)
=> \(\widehat{H_1}=\widehat{H_2}=90^0\) => t.giác AHB là t/giác vuông
c) Xét t/giác AHB và t/giác DHC
có AH = HD (gt)
BH = CH (gt)
\(\widehat{AHB}=\widehat{CHD}\) (đối đỉnh)
=> t/giác AHB = t/giác DHC (c.g.c)
=> \(\widehat{BAH}=\widehat{HDC}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD
d) Xét t/giác ABM và t/giác CNM
có: AM = MC (gt)
BM = MN (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t.giác ABM = t/giác CNM (c.g.c)
=> AB = CN (2 cạnh tứng)
Mà AB = CD (vì t/giác ABH = t/giác DCH)
=> DC = CN => C là trung điểm của BN
a) Vì tam giác ABC cân tại A
=> AB = AC và Góc ABC = Góc ACB
Xét tam giác AHC và tam giác AHB, ta có:
Góc AHB = AHC ( = 90 độ )
AB = AC (cmt)
Góc ABC = Góc ACB ( cmt)
=> Tam giác AHC = Tam giác AHB ( ch-gn )
b) Vì tam giác AHC = Tam giác AHB ( câu a )
=> BH = HC ( Hai cạnh tương ứng )
Xét tam giác BHN và tam giác CHM, ta có:
BH = HC ( cmt )
Góc BHN = Góc CHM ( Hai góc đối đỉnh )
HN = HM ( gt )
=> Tam giác BHN = Tam giác CHM ( c-g-c )
=> Góc HMC = Góc BNH ( Hai góc tương ứng )
Mà góc HMC và góc BNH là hai góc so le trong
=> BN // AC
c) Xét tam giác MHC và tam giác QHB, ta có:
Góc HMC = Góc HQB ( = 90 độ )
Góc MCH = Góc QBH ( do tam giác ABC cân tại A )
HC = HB ( câu b )
=> Tam giác MHC = Tam giác QHB ( ch-gn )
=> Góc MHC = Góc QHB
Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )
=> Góc QHB = Góc BHN
Xét tam giác AQH và tam giác AMH, ta có:
Góc AQH = Góc AMH ( = 90 độ )
AH là cạnh huyền chung
Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )
=> Tam giác AQH = Tam giác AMH ( ch-gn )
=> QH = HM ( Hai cạnh tương ứng )
Mà HM = HN ( gt )
=> QH = HN
Gọi K là trung điểm của QN
Xét tam giác KHQ và tam giác KHN, ta có:
HQ = HN ( cmt )
Góc QHB = Góc BHN ( cmt )
HK là cạnh chung
=> Tam giác KHQ = Tam giác KHN ( c-g-c )
=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )
Mà góc QKH và góc NKH là hai góc kề bù
=> Góc QKH = Góc NKH = 180/2 = 90 độ
=> HK là đường trung trực của QN
Hay BC là đường trung trực của QN
Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....
sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo
A B C M H 5 5 8
a) Xét ΔAHB và ΔAHC có :
\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)
AB = AC (ΔABC cân tại A)
\(\widehat{AHB}=\widehat{AHC}\left(=90độ\right)\)
Suy ra : ΔAHB = ΔAHC (ch - gn)
Ta có đpcm
b) Từ câu a có :
ΔAHB = ΔAHC (ch - gn)
=>BH = HC (2 cạnh tương ứng)
=> \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét ΔACH cân tại H (AH ⊥BC) có :
Áp dụng định lí PY - TA - GO :
\(AH^2=AB^2-BH^2\)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
Ta có đct
c) Xét ΔABH và ΔMBH có :
\(AH=MH\left(gt\right)\)
\(\widehat{AHB}=\widehat{MHB}\left(=90độ\right)\)
BH : cạnh chung
=> ΔABH = ΔMBH (c-g-c)
=> AB = BM (2 cạnh tương ứng)
Do đó : ΔABM cân tại B
Ta có đpcm
d)Xét ΔACH và ΔMBH có :
\(AC=BM\left(=AB\right)\)
BH = HC (chứng minh trên)
AH = HM (gt)
=> ΔACH = ΔMBH (c.c.c)
=> \(\widehat{HAC}=\widehat{HMB}\) (2 góc tương ứng)
Mặt khác, thấy : 2 góc này ở vị trí so le trong
Suy ra : BM // AC
Ta có đpcm
a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB
mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)
b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)
xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)
xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg
\(a,\left\{{}\begin{matrix}AB=AC\\BH=HC\\AH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\\ \Rightarrow\widehat{AHB}=\widehat{AHC}\\ \text{Mà }\widehat{AHB}+\widehat{AHC}=180^0\\ \Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\\ \Rightarrow AH\perp BC\\ b,\left\{{}\begin{matrix}HM=HA\\\widehat{AHB}=\widehat{MHC}\left(đđ\right)\\BH=HC\end{matrix}\right.\Rightarrow\Delta AHB=\Delta MHC\left(c.g.c\right)\\ \Rightarrow\widehat{HBA}=\widehat{HCM}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}MC\)