Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sử dụng tính chất: hai tia phân giác của hai góc kề bù thì vuông góc với nhau
+) BM; BI là 2 tia p/g của góc B trong và ngoài tam giác => BM | BI => góc MBI = 90o
CN và CI là 2 tia p/g của góc C trong và ngoài tam giác ABC => CN | CI => góc ICN = 90o
+) Xét tam giác MBC có: góc M + MCB + MBC = 180o => góc M + MCB + (MBI + IBC) = 180o
=> góc M + góc \(\frac{C}{2}\) + góc \(\frac{B}{2}\) + 90o = 180o => góc M + góc \(\frac{B+C}{2}\) = 90o => góc M = 90o - góc \(\frac{B+C}{2}\) = \(\frac{180^o-\left(B+C\right)}{2}=\frac{A}{2}\)
+) tương tự, ta có góc N = góc A/2
Vậy góc M = Góc N = góc A/2
b) đã làm ở bài trên
Xét tam giác ABC có :
A + ABC + ACB = 180 *
=> ABC + ACB = 180* - a
Mà BC là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Mà CE là phân giác ACB
=> ACE = BCE = \(\frac{ACB}{2}\)
=> ECB + DBC = \(\frac{ACB+ABC}{2}\)= \(\frac{180-a}{2}\)
Xét tam giác OBC có :
OBC + OCB + BOC = 180*
=> BOC = 180* - ( OBC + OCB)
=> BOC = 180* - \(\frac{180-a}{2}\)
=> BOC =\(\frac{a}{2}\)(dpcm)
+) Góc BDC là góc ngoài của tam giác ABD tại đỉnh D => góc BDC = góc A + góc ABD = góc A + góc \(\frac{B}{2}\)
+) Góc CEA là góc ngoài của tam giác BEC tại đỉnh E => góc CEA = góc B + góc BCE = góc B + góc \(\frac{C}{2}\)
Để góc BDC = góc CEA <=> góc A + góc \(\frac{B}{2}\) = góc B + góc \(\frac{C}{2}\) <=> góc A = góc \(\frac{B}{2}\) + góc \(\frac{C}{2}\) = \(\frac{B+C}{2}\)
=> B + C = 2.A
Mà góc A + B + C = 180o nên góc A + 2.A = 180o => 3.A = 180o => góc A = 60o
Vậy,.,,,,,