K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ANH+góc AMH=180 độ

=>AMHN nội tiếp

b: Tham khảo

Tứ giác MCDE nội tiếp nên góc MED = 180 - C (1).

Tứ giác NBDE nội tiếp nên góc NED = 180 - B (2).

Mà góc MEN = 360 - MED - NED (3).

Thay (1), (2) vào (3) được: góc MEN = 360 - (180 - C) - (180 - B) = B +C = 180 - A.

Suy ra MEN + MAN =180. Vậy tứ giác MENA nội tiếp.

=>E thuộc đường tròn ngoại tiếp ΔAMN

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng hàng b) Chứng minh HL vuông góc với AK 3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).Kẻ đường kính KM của...
Đọc tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
5 tháng 5 2018

c. 

Tứ giác IKNC là tứ giác nội tiếp (cmt)=> \(\widehat{IKC}=\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{IC}\))

Xét đt(O) có: \(\widehat{ABC}=\widehat{ANC=}\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{NC}\))

=> \(\widehat{ABC}=\widehat{IKC}\)mà 2 góc này ở vị trí đồng vị => IK // HB (dhnb)

Chứng minh tương tự câu a ta có: Tứ giác AMHI là tứ giác nội tiếp => \(\widehat{AHI}=\widehat{AMI}=\widehat{AMC}\)(cùng = \(\frac{1}{2}sđ\widebat{AI}\))

Xét đt(O) có: \(\widehat{ABC}=\widehat{AMC}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)=> \(\widehat{ABC}=\widehat{AHI}\)mà 2 góc này ở vị trí đồng vị => HI // BK

Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{BM}\)

Xét đt(O) có: \(\widehat{ACM}=\frac{1}{2}sđ\widebat{AM}\)và \(\widehat{BCM}=\frac{1}{2}sđ\widebat{BM}\)=> \(\widehat{ACM}=\widehat{BCM}\)=> CM là tia phân giác của \(\widehat{ACB}\)

CMTT ta có: AN là tia phân giác của \(\widehat{BAC}\)

Mà 2 dây AN và CM cắt nhau tại I (gt) => BI là tia phân giác của \(\widehat{ABC}\)hay BI là tia phân giác của \(\widehat{HBK}\)

Xét tứ giác BHIK có:

* HI // BK (cmt)

* IK // HB (cmt)

=> tứ giác BHIK là hình bình hành (DHNB)

Mà BI là phân giác của \(\widehat{HBK}\)(cmt) => tứ giác BHIK là hình thoi (dhnb hình thoi)

d. Vì \(\widehat{NBK}=\widehat{BMN}=\widehat{BMK}\left(cmt\right)\)=> BN là tiếp tuyến tại B của đt (P) ngoại tiếp \(\Delta MBK\)=> \(BN\perp BP\)Mà \(BN\perp BD\)do \(\widehat{DBN}=90^o\)(góc nội tiếp chắn nửa đt) => B, P , D thẳng hàng

Tương tự ta có: C, Q, D thẳng hàng

\(\Delta BPK\)và \(\Delta DBC\)là 2 tam giác cân có chung góc ở đáy => góc ở đỉnh của chúng bằng nhau => \(\widehat{BPK}=\widehat{BDC}\)Mà 2 góc này ở vị trí đồng vị => PK // DC (dhnb) => PK // DQ

CMTT ta có: DP // QK => DPKQ  là hình bình hành (dhnb HBH) => DK đi qua trung điểm của PQ => D, E, K thẳng hàng (đpcm)

5 tháng 5 2018

a. Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{MB}\)=> \(\widehat{ACM}=\widehat{BCM}\)(2 góc nội tiếp chắn 2 cung = nhau)

Lại có: \(\widehat{ACM}=\widehat{ANM}\)(CÙNG = \(\frac{1}{2}sđ\widebat{AM}\))  => \(\widehat{MNA}=\widehat{BCM}\)hay \(\widehat{KNI}=\widehat{KCI}\)(Do M,K,N và A,I,N => \(\widehat{MNA}=\widehat{KNI}\)M,I,C và B,K,C => \(\widehat{BCM}=\widehat{KCI}\)) => IKNC là tứ giác nội tiếp (Dấu hiệu nhận biết)

b. Xét đường tròn (O) có: \(\widehat{BMN}=\frac{1}{2}sđ\widebat{BN}\)và \(\widehat{NBC}=\widehat{NBK}=\frac{1}{2}sđ\widebat{NC}\)

mà N là điểm chính giữa cung nhỏ \(\widebat{BC}\)(gt) => sđ \(\widebat{BN}\)= sđ \(\widebat{NC}\)=> \(\widehat{BMN}=\widehat{NBK}\)

Xét \(\Delta BMN\)và \(\Delta KBN\)có:

\(\widehat{N}\)chung

\(\widehat{BMN}=\widehat{NBK}\)(cmt)

=> \(\Delta BMN~\Delta KBN\)(g.g) => \(\frac{NB}{NK}=\frac{NM}{NB}\)<=> \(NB^2=NK.NM\)(đpcm)