Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử M nằm giữa B and D
a)
tam giác IED có:
\(\hept{\begin{cases}IE=ID=\frac{1}{2}AM\\\widehat{EID}=2.\widehat{BAD}=60^0\end{cases}}\)
=> TAM GIÁC IED là tam giác đều (1)
Chứng minh tương tự ta được tam giác IFD là tam giác đều (2).
Từ (1) và (2) suy ra DEIF là hình thoi.
b) Vì
tam giác ABC đều nên trực tâm H củng là trọng tâm. Suy ra:
AH = 2.HD
Gọi P là trung điểm của AH
=> AP = PH = HD. Suy ra IP, KH thứ tự là đường trung bình của các tam giác AMH và DIP
=> MH // IP và KH // IP,
=> M , K , H thẳng hàng
c)
Vì tam giac EDK vuông tại K nên ta có: EF =2.EK = 2. ED.sinKDE =\(\sqrt{3}\).DE do đó EF đạt GTNN
=>DE đạt GTNN => \(DE\perp AB=>M\)trùng zs D ( Có thể dùng đ.lý pitago để tính EF theo DE ).
d) ta có diện tích DEIF=\(\frac{1}{2}DI.EF\)theo DE
e)e) Tìm quỹ tích của K thông qua quỹ tích của I.
bài này dài lắm . nên gợi ý như thế thôi . cần hỏi chỗ nào ib riêng cho mình ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác vuông ADH và tam giác vuông AHB có góc A chung nên đồng dạng => AD/AH = AH/AB => AH2 = AD.AB
cmtt ta cũng có AH2 = AE.AB => AD.AB = AE. AC
Xét tam giác ABE và tam giác ACD có góc A chung và AB/AC = AE/AD (cmt)
=> tg ABE đồng dạng tg ACD (c-g-c) => góc ABE = góc ACD
đến đây bn tự cm tiếp nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành