K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có 

\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)

Do đó: ΔKHB\(\sim\)ΔIHC(g-g)

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

26 tháng 4 2022

a/

Xét tg vuông ABC và tg vuông HBA có \(\widehat{ACB}=\widehat{HAB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABC đồng dạng với tg HBA (g.g.g)

b/

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=5\sqrt{5}\) (Pitago)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông băng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{81}{5\sqrt{5}}=\dfrac{81\sqrt{5}}{25}\)

\(\Rightarrow CH=BC-BH=5\sqrt{5}-\dfrac{81\sqrt{5}}{25}=\dfrac{44\sqrt{5}}{25}\)

Ta có

\(AH^2=BH.CH\) (trong tg vuông bình phường đường cao thuộc cạnh huyền băng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH^2=\dfrac{81\sqrt{5}}{25}.\dfrac{44\sqrt{5}}{25}\) Khai căn ra AH

c/

Xét tg vuông BHI và tg vuông BEC có \(\widehat{CBE}\) chung

=> tg BHI đồng dạng với tg BEC (g.g.g)

\(\Rightarrow\dfrac{BI}{BC}=\dfrac{BH}{BE}\Rightarrow BI.BE=BH.BC\left(dpcm\right)\)

 

26 tháng 1 2022

a) Xét \(\Delta\) DHM và \(\Delta\) DMC:

\(\widehat{MDH}chung.\) 

\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)

b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).

\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).

\(\Rightarrow\) M là trung điểm của BC.

Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)

\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow DH.MC=DM.HM.\)

Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).

\(\Rightarrow DH.BM=AD.HM.\)

c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).

              \(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)

\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)

Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)

Xét \(\Delta\) ADH và \(\Delta\) BMH:

\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)

\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)

\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).

Xét \(\Delta\) AMN và \(\Delta\) BHN:

\(\widehat{N}chung.\)

\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)

\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)

\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).

Xét \(\Delta\) ABN: 

AM là đường cao \(\left(AM\perp BC\right).\)

BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)

AM cắt BH tại E (gt).

\(\Rightarrow\) E là trực tâm.

\(\Rightarrow\) EN là đường cao.

\(\Rightarrow EN\perp AB.\)