K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB~ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\widehat{DAE}\) chung

Do đó: ΔADE~ΔABC

=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\widehat{DAE}\) chung

Do đó: ΔADE~ΔABC

b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHEB~ΔHDC
=>\(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

=>\(HE\cdot HC=HB\cdot HD\)

c: Ta có: BH\(\perp\)AC tại D

CK\(\perp\)AC

Do đó: BH//CK

ta có:CH\(\perp\)AB

BK\(\perp\)AB

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

ΔAED~ΔACB

=>\(\widehat{AED}=\widehat{ACB}\)

d: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại O

Xét ΔBEC vuông tại Evà ΔBOA vuông tại O có

\(\widehat{EBC}\) chung

Do đó:ΔBEC~ΔBOA

=>\(\dfrac{BE}{BO}=\dfrac{BC}{BA}\)

=>\(BE\cdot BA=BO\cdot BC\)

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

\(\widehat{DCB}\) chung

DO đó: ΔCDB~ΔCOA

=>\(\dfrac{CD}{CO}=\dfrac{CB}{CA}\)

=>\(CD\cdot CA=CO\cdot CB\)

\(BE\cdot BA+CD\cdot CA\)

\(=BO\cdot BC+CO\cdot BC\)

\(=BC\left(BO+CO\right)=BC^2\)

1 tháng 5 2024

Phần e,f,g đou ạ

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng vơi ΔABC

b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co

góc EHB=góc DHC

=>ΔHEB đồng dạng vơi ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

Xét tứ giác BHCK co

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,M,K thẳng hàng

ΔAED đồg dạng với ΔACB

=>góc AED=góc ACB

d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có

góc EBC chung

=>ΔBEC đồng dạng với ΔBOA

=>BE/BO=BC/BA

=>BE*BA=BO*BC

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

góc OCA chung

=>ΔCDB đồng dạng với ΔCOA

=>CD/CO=CB/CA

=>CO*CB=CD*CA

=>BE*BA+CD*CA=BC^2